File size: 18,532 Bytes
c00ff2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
# pylint: skip-file
# Copied from: https://github.com/espnet/espnet/blob/master/espnet/nets/ctc_prefix_score.py
import itertools as it
from typing import List
import pandas as pd
import torch
from transformers import LogitsProcessor, PreTrainedTokenizer
class CTCPrefixScore(object):
"""Compute CTC label sequence scores
which is based on Algorithm 2 in WATANABE et al.
"HYBRID CTC/ATTENTION ARCHITECTURE FOR END-TO-END SPEECH RECOGNITION,"
but extended to efficiently compute the label probabilities for multiple
hypotheses simultaneously
See also Seki et al. "Vectorized Beam Search for CTC-Attention-Based
Speech Recognition," In INTERSPEECH (pp. 3825-3829), 2019.
"""
def __init__(self, x, blank, eos):
self.logzero = -1e10
self.blank = blank
self.eos = eos
self.input_length = x.shape[1]
self.batch_size = x.shape[0]
self.x = x
self.device = x.device
# Preallocate `r` and `xs` tensors
# `num_labels` will be set dynamically in __call__ but preallocated with maximum capacity
self.max_num_labels = x.shape[2] # Set to a max value that can be dynamically resized
self.r = torch.full((self.batch_size, self.input_length, 2, self.max_num_labels), self.logzero,
device=self.device)
self.xs = torch.full((self.batch_size, self.input_length, self.max_num_labels), self.logzero,
device=self.device)
def initial_state(self):
"""Obtain an initial CTC state."""
# Create initial CTC state tensor and use in-place operations to fill
r = torch.full((self.batch_size, self.input_length, 2), self.logzero, device=self.device)
r[..., 1] = torch.cumsum(self.x[..., self.blank], dim=1)
s = torch.zeros((self.batch_size, 1), device=self.device)
return r, s
def _resize_tensors(self, number_of_current_samples, num_labels):
if self.r.shape[0] != number_of_current_samples:
self.r = self.r[:number_of_current_samples, ...]
self.xs = self.xs[:number_of_current_samples, ...]
if self.r.shape[3] != num_labels:
self.r = self.r[:, :, :, :num_labels].fill_(self.logzero)
self.xs = self.xs[:, :, :num_labels].fill_(self.logzero)
else:
self.r.fill_(self.logzero)
self.xs.fill_(self.logzero)
def _initialize_r(self, decoded_len):
mask = (decoded_len == 0)
self.r[mask, 0, 0, :] = self.xs[mask, 0]
def _compute_log_phi(self, r_sum, cs, last, decoded_len, r_prev):
# Expand r_sum for num_labels and initialize log_phi
log_phi = r_sum[..., None].expand(-1, -1, cs.shape[1])
# Create mask for cases where `decoded_len > 0` and to identify where `c == last[i]` for all `i`
non_zero_mask = (decoded_len > 0)
label_match_mask = (cs == last.unsqueeze(1))
# Update log_phi where both `decoded_len > 0` and `c == last[i]`
log_phi = torch.where((non_zero_mask.unsqueeze(1) & label_match_mask)[:, None, :], r_prev[..., 1:2], log_phi)
return log_phi
def _compute_log_psi(self, decoded_len, log_phi, x_current):
"""This function computes forward probabilities log(r_t^n(h)), log(r_t^b(h)),
and log prefix probabilities log(psi) for all labels in the batch.
:param decoded_len: tensor of shape (batch_size,) containing the length of the decoded sequence
:param log_phi: tensor of shape (batch_size, input_length, num_labels) containing the forward probabilities
:param x_current: tensor of shape (batch_size, input_length, num_labels) containing the input frame
:return log_psi: tensor of shape (batch_size,num_labels) containing the log prefix probabilities
"""
B, T, V = log_phi.shape
start = torch.clamp(decoded_len, min=1) # Ensure start is at least 1 to avoid out-of-bounds
# Initialize log_psi with the start position of r[:, start - 1, 0, :]
log_psi = self.r[torch.arange(B), start - 1, 0, :]
# Mask for handling sequence lengths based on decoded_len
mask_t = torch.arange(1, T, device=decoded_len.device).expand(B, T - 1) >= decoded_len.unsqueeze(1)
# Accumulate log_psi only up to the last valid time step for each sequence
log_psi = torch.logaddexp(log_psi, torch.logsumexp(
torch.where(mask_t.unsqueeze(-1), log_phi[:, :-1] + self.xs[:, 1:], self.logzero), dim=1))
start = torch.clamp(decoded_len, 1)
# TODO: Vectorize this loop by compute suffix xs and multiplying with log_phi
# xs = self.xs[:,1:,:].clone()
# xs_cum = torch.cumsum(xs, dim=1)
# xs_cum_expanded = xs_cum.unsqueeze(1).repeat(1, T-1, 1, 1)
# xs_u = (xs_cum_expanded - torch.nn.functional.pad(xs_cum[:,:-1,:], (0,0,1,0), value=0).unsqueeze(2).repeat(1, 1,T-1,1)).permute(0,2,1,3)
#
# phis_new = log_phi[:,:-1].clone()
# phis_new[:, 0] = torch.logaddexp(phis_new[:, 0], self.r[:, 0, 0, :])
# phis_new = phis_new.unsqueeze(1).repeat(1, T-1, 1, 1)
# causal_mask = torch.ones((T-1,T-1), dtype=torch.bool, device=self.device).tril().unsqueeze(0).unsqueeze(-1).repeat(B,1,1,1)
# mask = causal_mask & mask_t.unsqueeze(2).unsqueeze(-1)
# r_zero = torch.logsumexp(torch.where(mask, xs_u + phis_new, self.logzero), dim=2)
# self.r[:,1:,0] = r_zero
for t in range(start.min(), self.input_length):
should_decode = decoded_len <= t
self.r[:, t, 0] = torch.logaddexp(self.r[:, t - 1, 0],
log_phi[:, t - 1]) + self.xs[:, t]
self.r[:, t, 1] = (
torch.logaddexp(self.r[:, t - 1, 0], self.r[:, t - 1, 1]) + x_current[:, t, self.blank][:, None]
)
if ~should_decode.any():
self.r[:, t] = torch.where(should_decode.unsqueeze(-1).unsqueeze(-1), self.r[:, t], self.logzero)
return log_psi
def _update_log_psi_with_eos(self, log_psi, cs, r_sum):
# Update log_psi for eos positions
eos_mask = (cs == self.eos)
log_psi[eos_mask] = r_sum[:, -1].unsqueeze(1).expand_as(log_psi)[eos_mask]
# Exclude blank probabilities if eos is not the blank
if self.eos != self.blank:
blank_mask = (cs == self.blank)
log_psi[blank_mask] = self.logzero
return log_psi
def __call__(self, y, cs, decoded_len, samples_to_be_decoded, r_prev):
"""Compute CTC prefix scores for next labels
:param y : prefix label sequence
:param cs : array of next labels
:param r_prev: previous CTC state
:return ctc_scores, ctc_states
"""
# initialize CTC states
# output_length = y.shape[1] - 1 # ignore sos
# new CTC states are prepared as a frame x (n or b) x n_labels tensor
# that corresponds to r_t^n(h) and r_t^b(h).
# Dynamically resize r and xs to match num_labels if necessary
num_labels = cs.shape[1]
number_of_current_samples = cs.shape[0]
self._resize_tensors(number_of_current_samples, num_labels)
# Create a view of the current input frame
x_current = self.x[samples_to_be_decoded]
self.xs = torch.gather(x_current, 2, cs.unsqueeze(1).expand(-1, self.input_length, -1))
# Initialize r for the first frame
self._initialize_r(decoded_len)
# prepare forward probabilities for the last label
r_sum = torch.logaddexp(r_prev[:, :, 0], r_prev[:, :, 1]) # log(r_t^n(g) + r_t^b(g))
last = y[:, -1]
# precompute log_phi
log_phi = self._compute_log_phi(r_sum, cs, last, decoded_len, r_prev)
# compute forward probabilities log(r_t^n(h)), log(r_t^b(h)),
# and log prefix probabilities log(psi)
log_psi = self._compute_log_psi(decoded_len, log_phi, x_current)
# get P(...eos|X) that ends with the prefix itself
log_psi = self._update_log_psi_with_eos(log_psi, cs, r_sum)
# return the log prefix probability and CTC states, where the label axis
# of the CTC states is moved to the first axis to slice it easily
return log_psi, self.r
class CTCRescorerLogitsProcessor(LogitsProcessor):
def __init__(
self,
encoder_logits: torch.FloatTensor,
encoder_output_lens: torch.Tensor,
blank_token_id: int,
pad_token_id: int,
eos_token_id: int,
bos_token_id: int,
tokenizer: PreTrainedTokenizer,
ctc_margin: int,
ctc_weight: float,
num_beams: int,
debug: bool = False,
ctc_tokens_to_score: int = 500
):
super().__init__()
same_logits = torch.tensor(list((tokenizer.upper_cased_tokens.items())))
logits = torch.nn.functional.log_softmax(encoder_logits, dim=-1)
logits[..., same_logits[:, 1]] = logits[..., same_logits[:, 0]]
self.logits = logits
self.ctc_prefix_scorer = CTCPrefixScore(
self.logits,
blank_token_id,
eos_token_id,
)
self.batch_size = logits.shape[0]
self.input_length = logits.shape[1]
self.num_tokens = logits.shape[2]
self.device = logits.device
self.ctc_weight = ctc_weight
self.num_beams = num_beams
self.ctc_state_prev, self.ctc_score_prev = self.ctc_prefix_scorer.initial_state()
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.tokenizer = tokenizer
self.pad_token_id = pad_token_id
self.blank_token_id = blank_token_id
self.debug = False
self.first_timestamp_token_id = tokenizer.get_vocab()["<|0.00|>"]
self.tmp_ctc_scores = torch.empty((self.batch_size, self.num_tokens - 1), device=self.device)
self.tmp_ctc_states = torch.empty((self.batch_size, self.num_tokens - 1, self.input_length, 2),
device=self.device)
self.ctc_tokens_to_score = ctc_tokens_to_score
def analyze_predictions(self,
scores, ctc_scores, next_token_scores, input_ids, k=10):
print("\n" + "#" * 100)
batch_size = input_ids.shape[0]
best_att_ids = scores.topk(k=k, dim=1)
ctc_scores[:, self.first_timestamp_token_id:] = self.ctc_prefix_scorer.logzero
best_ctc_ids = ctc_scores.topk(k=k, dim=1)
best_ids = next_token_scores.topk(k=k, dim=1)
decoded_prefixes = self.tokenizer.batch_decode(
input_ids, decode_with_timestamps=True, skip_special_tokens=False
)
def prepare_and_decode(best_ids_tensor):
new_tensor = torch.zeros((batch_size, k * 2), dtype=torch.long)
new_tensor[:, 0::2] = best_ids_tensor.indices
new_tensor[:, 1::2] = self.tokenizer.vocab['#']
# Flatten to (batch_size * k, 2)
flat_tensor = new_tensor.view(-1, 2)
decoded = self.tokenizer.batch_decode(
flat_tensor, decode_with_timestamps=True, skip_special_tokens=False
)
# Reshape back to (batch_size, k)
decoded = [(decoded[i * k:(i + 1) * k]) for i in range(batch_size)]
return decoded
decoded_att = prepare_and_decode(best_att_ids)
decoded_ctc = prepare_and_decode(best_ctc_ids)
decoded_next = prepare_and_decode(best_ids)
for idx in range(batch_size):
print("-" * 80)
print(f"HYPOTHESIS {idx}")
print("\nPREFIX:")
print(decoded_prefixes[idx])
def print_with_pandas(tokens, scores, title):
df = pd.DataFrame([tokens, [f"{s.item():.2f}" for s in scores]])
df.index = [f"{title}", "Score"]
print(f"\n{title}:")
print(df.to_string(index=True, header=False))
print_with_pandas(decoded_att[idx], best_att_ids.values[idx], "ATT_TOKENS")
print_with_pandas(decoded_ctc[idx], best_ctc_ids.values[idx], "CTC_TOKENS")
print_with_pandas(decoded_next[idx], best_ids.values[idx], "NEXT_TOKENS")
print(f"\nCTC_EOS: {ctc_scores[idx, self.tokenizer.eos_token_id].item():.2f}")
print()
print("#" * 100)
def update_state(self, best_ids, beam_idx):
mask = best_ids < self.first_timestamp_token_id
self.ctc_state_prev = torch.where(mask.unsqueeze(-1).unsqueeze(-1),
self.tmp_ctc_states[beam_idx, best_ids],
self.ctc_state_prev[beam_idx])
self.ctc_score_prev = torch.where(mask.unsqueeze(-1),
self.tmp_ctc_scores[beam_idx, best_ids].unsqueeze(-1),
self.ctc_score_prev[beam_idx])
def __call__(self, input_ids_orig: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
input_ids = input_ids_orig.clone()
# Remove prefix from CTC scoring
if (input_ids[:, 0] != self.bos_token_id).any():
input_ids = torch.stack(
[row[(row == self.bos_token_id).nonzero(as_tuple=True)[0].item():] for row in input_ids])
# Remove task/lang/timestamp tokens from input_ids
input_prefix_len = len(self.tokenizer.prefix_tokens)
if input_prefix_len > 1:
input_ids = input_ids[:, input_prefix_len - 1:]
# Setup the first token to be the blank token(sos)
input_ids[:, 0] = self.blank_token_id
# If there is last token in input_ids timestamp replicate last non-timestamp token which could be potentially even the first token
decoded_len = torch.logical_and(input_ids <= self.first_timestamp_token_id,
input_ids != self.blank_token_id).sum(dim=1)
mask = torch.logical_and(input_ids[:, -1] >= self.first_timestamp_token_id,
input_ids[:, -1] != self.blank_token_id)
last_non_timestamp_token = torch.gather(input_ids, 1,
torch.logical_or(input_ids < self.first_timestamp_token_id,
input_ids == self.blank_token_id).sum(dim=1,
keepdim=True) - 1)
input_ids[mask, -1] = last_non_timestamp_token[mask, 0]
# If there is no eos token in the last position, we need to continue decoding
to_be_decoded = input_ids[:, -1] != self.eos_token_id
self.tmp_ctc_scores[:] = self.ctc_prefix_scorer.logzero
input_ids_local = input_ids[to_be_decoded]
ids_to_score = torch.topk(scores[:, :self.first_timestamp_token_id], k=self.ctc_tokens_to_score).indices
# always score EOS token if not present put on position of last id
is_eos_present = (ids_to_score == self.eos_token_id).any(dim=1)
ids_to_score[~is_eos_present, self.ctc_tokens_to_score - 1] = self.eos_token_id
decoded_len_local = decoded_len[to_be_decoded]
ctc_scores_local, ctc_states_local = self.ctc_prefix_scorer(input_ids_local, ids_to_score[to_be_decoded],
decoded_len_local, to_be_decoded,
self.ctc_state_prev[to_be_decoded])
# As the CTC scorer might run on subset of samples, we need to scatter the results back to the original batch
self.tmp_ctc_scores[to_be_decoded] = (self.tmp_ctc_scores[to_be_decoded]
.scatter(1, ids_to_score[to_be_decoded], ctc_scores_local))
self.tmp_ctc_states[to_be_decoded] = (self.tmp_ctc_states[to_be_decoded].permute(0, 2, 3, 1)
.scatter(3, ids_to_score[to_be_decoded].unsqueeze(1).unsqueeze(1)
.repeat(1, *ctc_states_local.shape[1:3], 1), ctc_states_local)
.permute(0, 3, 1, 2))
# Set the CTC score for the timestamp tokens to the maximum to prefer them over the rest
self.tmp_ctc_scores[:, self.first_timestamp_token_id:] = self.tmp_ctc_scores.max(dim=1).values[:, None]
ctc_scores = self.tmp_ctc_scores - self.ctc_score_prev
next_token_scores = (1 - self.ctc_weight) * scores + self.ctc_weight * ctc_scores
if self.debug:
self.analyze_predictions(scores, ctc_scores, next_token_scores, input_ids_orig)
return next_token_scores
class LogSoftmaxProcessor(LogitsProcessor):
def __init__(
self,
):
super().__init__()
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
scores = torch.nn.functional.log_softmax(scores, dim=-1)
return scores
class GreedyCTCDecoder(torch.nn.Module):
def __init__(self, tokenizer, blank=0):
super().__init__()
self.blank = blank
self.tokenizer = tokenizer
def forward(self, emission: torch.Tensor) -> List[str]:
"""Given a sequence emission over labels, get the best path
Args:
emission (Tensor): Logit tensors. Shape `[num_seq, num_label]`.
Returns:
List[str]: The resulting transcript
"""
indices = torch.argmax(emission, dim=-1) # [num_seq,]
indices = [torch.unique_consecutive(index, dim=-1) for index in indices]
indices = [index[index != self.blank] for index in indices]
indices = torch.nn.utils.rnn.pad_sequence(indices, batch_first=True,
padding_value=self.tokenizer.pad_token_id)
indices[indices >= len(self.tokenizer)] = self.tokenizer.unk_token_id
return indices
def ctc_greedy_decode(logits: torch.Tensor, blank, pad_token_id) -> torch.Tensor:
idxs = torch.argmax(logits, dim=-1)
for i, prediction in enumerate(idxs):
deduplicated = [k for k, g in it.groupby(prediction) if k != blank]
idxs[i, : len(deduplicated)] = torch.tensor(deduplicated)
idxs[i, len(deduplicated):] = pad_token_id
return idxs
|