PyTorch
ONNX
vocoder
mel
vocos
hifigan
tts
wetdog commited on
Commit
452f58b
·
verified ·
1 Parent(s): c65ff3e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -24
README.md CHANGED
@@ -103,8 +103,8 @@ We also modified the mel spectrogram loss to use 128 bins and fmax of 11025 inst
103
 
104
  * initial_learning_rate: 5e-4
105
  * scheduler: cosine without warmup or restarts
106
- * mel_loss_coeff: 45
107
- * mrd_loss_coeff: 0.1
108
  * batch_size: 16
109
  * num_samples: 16384
110
 
@@ -112,27 +112,15 @@ We also modified the mel spectrogram loss to use 128 bins and fmax of 11025 inst
112
 
113
  <!-- This section describes the evaluation protocols and provides the results. -->
114
 
115
- ### Testing Data, Factors & Metrics
116
-
117
- #### Testing Data
118
-
119
- <!-- This should link to a Dataset Card if possible. -->
120
-
121
- [More Information Needed]
122
-
123
-
124
- #### Metrics
125
-
126
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
127
-
128
- [More Information Needed]
129
-
130
- ### Results
131
-
132
- [More Information Needed]
133
-
134
- #### Summary
135
 
 
 
 
 
 
 
 
136
 
137
 
138
  ## Citation
@@ -165,6 +153,5 @@ Copyright(c) 2024 by Language Technologies Unit, Barcelona Supercomputing Center
165
  [MIT](https://opensource.org/license/mit)
166
 
167
  ### Funding
168
- This work was funded by:
169
- - The [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
170
 
 
 
103
 
104
  * initial_learning_rate: 5e-4
105
  * scheduler: cosine without warmup or restarts
106
+ * mel_loss_coeff: 45
107
+ * mrd_loss_coeff: 0.1
108
  * batch_size: 16
109
  * num_samples: 16384
110
 
 
112
 
113
  <!-- This section describes the evaluation protocols and provides the results. -->
114
 
115
+ Evaluation was done using the metrics on the original repo, after 183 epochs we achieve:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
+ * val_loss: 3.81
118
+ * f1_score: 0.94
119
+ * mel_loss: 0.25
120
+ * periodicity_loss:0.132
121
+ * pesq_score: 3.16
122
+ * pitch_loss: 38.11
123
+ * utmos_score: 3.27
124
 
125
 
126
  ## Citation
 
153
  [MIT](https://opensource.org/license/mit)
154
 
155
  ### Funding
 
 
156
 
157
+ This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).