File size: 2,367 Bytes
c050095
 
 
9fd968b
 
 
 
 
 
 
 
 
 
 
23f01ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c050095
23f01ff
 
 
 
 
9fd968b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
license: apache-2.0
language:
- en
- ar
- fr
- de
- hi
- he
- ru
new_version: BSAtlas/BS_MedX_MedChat
pipeline_tag: image-to-text
---
---
description: |
  The BSAtlas Model is a multimodal large language model designed for advanced text generation and chatbot applications. Developed by BS|MedX, it supports both text and image inputs, or either, enabling rich contextual understanding and versatile responses.
features:
  - Multimodal capability: Processes both text and image inputs, or either, for versatile applications.
  - Powered by transformers: Built using state-of-the-art transformer architectures.
  - High-performance inference: Optimized for tasks combining natural language understanding and image analysis.
  - Fine-tuned for accuracy: Based on the robust Llama 3.2 11B model, enhanced with multimodal capabilities.
use_cases:
  - Multimodal chatbot development: Enables AI systems to process and respond based on text, image, or a combination of inputs.
  - Content creation: Generates descriptive text from images or augments text responses with visual context.
  - Healthcare applications: Supports applications like medical image analysis combined with conversational AI.
model_details:
  developed_by: BS|MedX
  base_model: Llama 3.2 11B
  license: apache-2.0
  languages_supported:
    - English (en)
installation: |
  To use this model, install the Hugging Face Transformers library and additional dependencies for image processing:
  ```bash
  !pip install transformers pillow torch unsloth datasets
  from transformers import AutoModelForCausalLM, AutoTokenizer  
from PIL import Image  

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("BSAtlas/model-name")  
model = AutoModelForCausalLM.from_pretrained("BSAtlas/model-name")  

# Example usage for text input
input_text = "Describe the contents of an image."
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

# Example usage for multimodal input
image = Image.open("path/to/image.jpg")
image_features = model.process_image(image)  # Replace with your image processing logic
inputs = tokenizer("Analyze this image:", return_tensors="pt")
outputs = model.generate(**inputs, image_features=image_features)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))