File size: 9,356 Bytes
4f31053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# -*- coding: utf-8 -*-


# ===========================================================================================
#
#    Copyright (c) Beijing Academy of Artificial Intelligence (BAAI). All rights reserved.
#
#    Author        : Fan Zhang
#    Email         : zhangfan@baai.ac.cn
#    Institute     : Beijing Academy of Artificial Intelligence (BAAI)
#    Create On     : 2023-12-19 10:45
#    Last Modified : 2023-12-25 07:59
#    File Name     : pipeline_emu2_gen.py
#    Description   :
#
# ===========================================================================================


from dataclasses import dataclass
from typing import List, Optional


from PIL import Image
import numpy as np
import torch
from torchvision import transforms as TF
from tqdm import tqdm
import pdb


from diffusers import DiffusionPipeline
from diffusers.utils import BaseOutput


from diffusers import UNet2DConditionModel, EulerDiscreteScheduler, AutoencoderKL
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import CLIPImageProcessor
from transformers import AutoModelForCausalLM, AutoTokenizer


EVA_IMAGE_SIZE = 448
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
DEFAULT_IMG_PLACEHOLDER = "<image>"


@dataclass
class EmuVisualGenerationPipelineOutput(BaseOutput):
   image: Image.Image
   nsfw_content_detected: Optional[bool]




class EmuVisualGenerationPipeline(DiffusionPipeline):


   def __init__(
       self,
       tokenizer: AutoTokenizer,
       multimodal_encoder: AutoModelForCausalLM,
       scheduler: EulerDiscreteScheduler,
       unet: UNet2DConditionModel,
       vae: AutoencoderKL,
       feature_extractor: CLIPImageProcessor,
       safety_checker: StableDiffusionSafetyChecker,
       eva_size=EVA_IMAGE_SIZE,
       eva_mean=OPENAI_DATASET_MEAN,
       eva_std=OPENAI_DATASET_STD,
   ):
       super().__init__()
       self.register_modules(
           tokenizer=tokenizer,
           multimodal_encoder=multimodal_encoder,
           scheduler=scheduler,
           unet=unet,
           vae=vae,
           feature_extractor=feature_extractor,
           safety_checker=safety_checker,
       )


       self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)


       self.transform = TF.Compose([
           TF.Resize((eva_size, eva_size), interpolation=TF.InterpolationMode.BICUBIC),
           TF.ToTensor(),
           TF.Normalize(mean=eva_mean, std=eva_std),
       ])


       self.negative_prompt = {}


   def device(self, module):
       return next(module.parameters()).device


   def dtype(self, module):
       return next(module.parameters()).dtype


   @torch.no_grad()
   def __call__(
       self,
       inputs: List[Image.Image | str] | str | Image.Image,
       height: int = 1024,
       width: int = 1024,
       num_inference_steps: int = 50,
       guidance_scale: float = 3.,
       crop_info: List[int] = [0, 0],
       original_size: List[int] = [1024, 1024],
   ):
       if not isinstance(inputs, list):
           inputs = [inputs]


       # 0. Default height and width to unet
       height = height or self.unet.config.sample_size * self.vae_scale_factor
       width = width or self.unet.config.sample_size * self.vae_scale_factor


       device = self.device(self.unet)
       dtype = self.dtype(self.unet)


       do_classifier_free_guidance = guidance_scale > 1.0


       # 1. Encode input prompt
       prompt_embeds = self._prepare_and_encode_inputs(
           inputs,
           do_classifier_free_guidance,
       ).to(dtype).to(device)
       batch_size = prompt_embeds.shape[0] // 2 if do_classifier_free_guidance else prompt_embeds.shape[0]


       unet_added_conditions = {}
       time_ids = torch.LongTensor(original_size + crop_info + [height, width]).to(device)
       if do_classifier_free_guidance:
           unet_added_conditions["time_ids"] = torch.cat([time_ids, time_ids], dim=0)
       else:
           unet_added_conditions["time_ids"] = time_ids
       unet_added_conditions["text_embeds"] = torch.mean(prompt_embeds, dim=1)


       # 2. Prepare timesteps
       self.scheduler.set_timesteps(num_inference_steps, device=device)
       timesteps = self.scheduler.timesteps


       # 3. Prepare latent variables
       shape = (
           batch_size,
           self.unet.config.in_channels,
           height // self.vae_scale_factor,
           width // self.vae_scale_factor,
       )
       latents = torch.randn(shape, device=device, dtype=dtype)
       latents = latents * self.scheduler.init_noise_sigma


       # 4. Denoising loop
       for t in tqdm(timesteps):
           # expand the latents if we are doing classifier free guidance
           # 2B x 4 x H x W
           latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
           latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)


           noise_pred = self.unet(
               latent_model_input,
               t,
               encoder_hidden_states=prompt_embeds,
               added_cond_kwargs=unet_added_conditions,
           ).sample


           # perform guidance
           if do_classifier_free_guidance:
               noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
               noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)


           # compute the previous noisy sample x_t -> x_t-1
           latents = self.scheduler.step(noise_pred, t, latents).prev_sample


       # 5. Post-processing
       images = self.decode_latents(latents)


       # 6. Run safety checker
       images, has_nsfw_concept = self.run_safety_checker(images)


       # 7. Convert to PIL
       images = self.numpy_to_pil(images)
       return EmuVisualGenerationPipelineOutput(
           image=images[0],
           nsfw_content_detected=None if has_nsfw_concept is None else has_nsfw_concept[0],
       )


   def _prepare_and_encode_inputs(
       self,
       inputs: List[str | Image.Image],
       do_classifier_free_guidance: bool = False,
       placeholder: str = DEFAULT_IMG_PLACEHOLDER,
   ):
       # pdb.set_trace()
       device = self.device(self.multimodal_encoder.model)
       dtype = self.dtype(self.multimodal_encoder.model)


       has_image, has_text = False, False
       text_prompt, image_prompt = "", []
       for x in inputs:
           if isinstance(x, str):
               has_text = True
               text_prompt += x
           else:
               has_image = True
               text_prompt += placeholder
               image_prompt.append(self.transform(x))


       if len(image_prompt) == 0:
           image_prompt = None
       else:
           image_prompt = torch.stack(image_prompt)
           image_prompt = image_prompt.type(dtype).to(device)


       if has_image and not has_text:
           prompt = self.multimodal_encoder.model.encode_image(image=image_prompt)
           if do_classifier_free_guidance:
               key = "[NULL_IMAGE]"
               if key not in self.negative_prompt:
                   negative_image = torch.zeros_like(image_prompt)
                   self.negative_prompt[key] = self.multimodal_encoder.model.encode_image(image=negative_image)
               prompt = torch.cat([prompt, self.negative_prompt[key]], dim=0)
       else:
           prompt = self.multimodal_encoder.generate_image(text=[text_prompt], image=image_prompt, tokenizer=self.tokenizer)
           if do_classifier_free_guidance:
               key = ""
               if key not in self.negative_prompt:
                   self.negative_prompt[key] = self.multimodal_encoder.generate_image(text=[""], tokenizer=self.tokenizer)
               prompt = torch.cat([prompt, self.negative_prompt[key]], dim=0)


       return prompt


   def decode_latents(self, latents: torch.Tensor) -> np.ndarray:
       latents = 1 / self.vae.config.scaling_factor * latents
       image = self.vae.decode(latents).sample
       image = (image / 2 + 0.5).clamp(0, 1)
       image = image.cpu().permute(0, 2, 3, 1).float().numpy()
       return image


   def numpy_to_pil(self, images: np.ndarray) -> List[Image.Image]:
       """
       Convert a numpy image or a batch of images to a PIL image.
       """
       if images.ndim == 3:
           images = images[None, ...]
       images = (images * 255).round().astype("uint8")
       if images.shape[-1] == 1:
           # special case for grayscale (single channel) images
           pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
       else:
           pil_images = [Image.fromarray(image) for image in images]


       return pil_images


   def run_safety_checker(self, images: np.ndarray):
       if self.safety_checker is not None:
           device = self.device(self.safety_checker)
           dtype = self.dtype(self.safety_checker)
           safety_checker_input = self.feature_extractor(self.numpy_to_pil(images), return_tensors="pt").to(device)
           images, has_nsfw_concept = self.safety_checker(
               images=images, clip_input=safety_checker_input.pixel_values.to(dtype)
           )
       else:
           has_nsfw_concept = None
       return images, has_nsfw_concept