File size: 19,307 Bytes
			
			| ca7299e | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 | from typing import List, Dict, Any
from openfold.utils import rigid_utils as ru
from data import residue_constants
import numpy as np
import collections
import string
import pickle
import os
import torch
from torch_scatter import scatter_add, scatter
from Bio.PDB.Chain import Chain
from data import protein
import dataclasses
from Bio import PDB
Rigid = ru.Rigid
Protein = protein.Protein
# Global map from chain characters to integers.
ALPHANUMERIC = string.ascii_letters + string.digits + ' '
CHAIN_TO_INT = {
    chain_char: i for i, chain_char in enumerate(ALPHANUMERIC)
}
INT_TO_CHAIN = {
    i: chain_char for i, chain_char in enumerate(ALPHANUMERIC)
}
NM_TO_ANG_SCALE = 10.0
ANG_TO_NM_SCALE = 1 / NM_TO_ANG_SCALE
CHAIN_FEATS = [
    'atom_positions', 'aatype', 'atom_mask', 'residue_index', 'b_factors'
]
to_numpy = lambda x: x.detach().cpu().numpy()
aatype_to_seq = lambda aatype: ''.join([
        residue_constants.restypes_with_x[x] for x in aatype])
class CPU_Unpickler(pickle.Unpickler):
    """Pytorch pickle loading workaround.
    https://github.com/pytorch/pytorch/issues/16797
    """
    def find_class(self, module, name):
        if module == 'torch.storage' and name == '_load_from_bytes':
            return lambda b: torch.load(io.BytesIO(b), map_location='cpu')
        else: return super().find_class(module, name)
def create_rigid(rots, trans):
    rots = ru.Rotation(rot_mats=rots)
    return Rigid(rots=rots, trans=trans)
def batch_align_structures(pos_1, pos_2, mask=None):
    if pos_1.shape != pos_2.shape:
        raise ValueError('pos_1 and pos_2 must have the same shape.')
    if pos_1.ndim != 3:
        raise ValueError(f'Expected inputs to have shape [B, N, 3]')
    num_batch = pos_1.shape[0]
    device = pos_1.device
    batch_indices = (
        torch.ones(*pos_1.shape[:2], device=device, dtype=torch.int64) 
        * torch.arange(num_batch, device=device)[:, None]
    )
    flat_pos_1 = pos_1.reshape(-1, 3)
    flat_pos_2 = pos_2.reshape(-1, 3)
    flat_batch_indices = batch_indices.reshape(-1)
    if mask is None:
        # aligned_pos_1, aligned_pos_2, align_rots = align_structures(
        #     flat_pos_1, flat_batch_indices, flat_pos_2)
        # aligned_pos_1 = aligned_pos_1.reshape(num_batch, -1, 3)
        # aligned_pos_2 = aligned_pos_2.reshape(num_batch, -1, 3)
        # return aligned_pos_1, aligned_pos_2, align_rots
        mask = torch.ones(*pos_1.shape[:2], device=device).reshape(-1).bool()
    flat_mask = mask.reshape(-1).bool()
    # _, _, align_rots = align_structures(
    #     flat_pos_1[flat_mask],
    #     flat_batch_indices[flat_mask],
    #     flat_pos_2[flat_mask]
    # )
    # aligned_pos_1 = torch.bmm(
    #     pos_1,
    #     align_rots
    # )
    # return aligned_pos_1, pos_2, align_rots
    aligned_pos_1, aligned_pos_2, align_rots = align_structures(
        flat_pos_1[flat_mask], flat_batch_indices[flat_mask], flat_pos_2[flat_mask])
    aligned_pos_1 = aligned_pos_1.reshape(num_batch, -1, 3)
    aligned_pos_2 = aligned_pos_2.reshape(num_batch, -1, 3)
    return aligned_pos_1, aligned_pos_2, align_rots
def adjust_oxygen_pos(
    atom_37: torch.Tensor, pos_is_known = None
) -> torch.Tensor:
    """
    Imputes the position of the oxygen atom on the backbone by using adjacent frame information.
    Specifically, we say that the oxygen atom is in the plane created by the Calpha and C from the
    current frame and the nitrogen of the next frame. The oxygen is then placed c_o_bond_length Angstrom
    away from the C in the current frame in the direction away from the Ca-C-N triangle.
    For cases where the next frame is not available, for example we are at the C-terminus or the
    next frame is not available in the data then we place the oxygen in the same plane as the
    N-Ca-C of the current frame and pointing in the same direction as the average of the
    Ca->C and Ca->N vectors.
    Args:
        atom_37 (torch.Tensor): (N, 37, 3) tensor of positions of the backbone atoms in atom_37 ordering
                                which is ['N', 'CA', 'C', 'CB', 'O', ...]
        pos_is_known (torch.Tensor): (N,) mask for known residues.
    """
    N = atom_37.shape[0]
    assert atom_37.shape == (N, 37, 3)
    # Get vectors to Carbonly from Carbon alpha and N of next residue. (N-1, 3)
    # Note that the (N,) ordering is from N-terminal to C-terminal.
    # Calpha to carbonyl both in the current frame.
    calpha_to_carbonyl: torch.Tensor = (atom_37[:-1, 2, :] - atom_37[:-1, 1, :]) / (
        torch.norm(atom_37[:-1, 2, :] - atom_37[:-1, 1, :], keepdim=True, dim=1) + 1e-7
    )
    # For masked positions, they are all 0 and so we add 1e-7 to avoid division by 0.
    # The positions are in Angstroms and so are on the order ~1 so 1e-7 is an insignificant change.
    # Nitrogen of the next frame to carbonyl of the current frame.
    nitrogen_to_carbonyl: torch.Tensor = (atom_37[:-1, 2, :] - atom_37[1:, 0, :]) / (
        torch.norm(atom_37[:-1, 2, :] - atom_37[1:, 0, :], keepdim=True, dim=1) + 1e-7
    )
    carbonyl_to_oxygen: torch.Tensor = calpha_to_carbonyl + nitrogen_to_carbonyl  # (N-1, 3)
    carbonyl_to_oxygen = carbonyl_to_oxygen / (
        torch.norm(carbonyl_to_oxygen, dim=1, keepdim=True) + 1e-7
    )
    atom_37[:-1, 4, :] = atom_37[:-1, 2, :] + carbonyl_to_oxygen * 1.23
    # Now we deal with frames for which there is no next frame available.
    # Calpha to carbonyl both in the current frame. (N, 3)
    calpha_to_carbonyl_term: torch.Tensor = (atom_37[:, 2, :] - atom_37[:, 1, :]) / (
        torch.norm(atom_37[:, 2, :] - atom_37[:, 1, :], keepdim=True, dim=1) + 1e-7
    )
    # Calpha to nitrogen both in the current frame. (N, 3)
    calpha_to_nitrogen_term: torch.Tensor = (atom_37[:, 0, :] - atom_37[:, 1, :]) / (
        torch.norm(atom_37[:, 0, :] - atom_37[:, 1, :], keepdim=True, dim=1) + 1e-7
    )
    carbonyl_to_oxygen_term: torch.Tensor = (
        calpha_to_carbonyl_term + calpha_to_nitrogen_term
    )  # (N, 3)
    carbonyl_to_oxygen_term = carbonyl_to_oxygen_term / (
        torch.norm(carbonyl_to_oxygen_term, dim=1, keepdim=True) + 1e-7
    )
    # Create a mask that is 1 when the next residue is not available either
    # due to this frame being the C-terminus or the next residue is not
    # known due to pos_is_known being false.
    if pos_is_known is None:
        pos_is_known = torch.ones((atom_37.shape[0],), dtype=torch.int64, device=atom_37.device)
    next_res_gone: torch.Tensor = ~pos_is_known.bool()  # (N,)
    next_res_gone = torch.cat(
        [next_res_gone, torch.ones((1,), device=pos_is_known.device).bool()], dim=0
    )  # (N+1, )
    next_res_gone = next_res_gone[1:]  # (N,)
    atom_37[next_res_gone, 4, :] = (
        atom_37[next_res_gone, 2, :]
        + carbonyl_to_oxygen_term[next_res_gone, :] * 1.23
    )
    return atom_37
def write_pkl(
        save_path: str, pkl_data: Any, create_dir: bool = False, use_torch=False):
    """Serialize data into a pickle file."""
    if create_dir:
        os.makedirs(os.path.dirname(save_path), exist_ok=True)
    if use_torch:
        torch.save(pkl_data, save_path, pickle_protocol=pickle.HIGHEST_PROTOCOL)
    else:
        with open(save_path, 'wb') as handle:
            pickle.dump(pkl_data, handle, protocol=pickle.HIGHEST_PROTOCOL)
def read_pkl(read_path: str, verbose=True, use_torch=False, map_location=None):
    """Read data from a pickle file."""
    try:
        if use_torch:
            return torch.load(read_path, map_location=map_location)
        else:
            with open(read_path, 'rb') as handle:
                return pickle.load(handle)
    except Exception as e:
        try:
            with open(read_path, 'rb') as handle:
                return CPU_Unpickler(handle).load()
        except Exception as e2:
            if verbose:
                print(f'Failed to read {read_path}. First error: {e}\n Second error: {e2}')
            raise(e)
def chain_str_to_int(chain_str: str):
    chain_int = 0
    if len(chain_str) == 1:
        return CHAIN_TO_INT[chain_str]
    for i, chain_char in enumerate(chain_str):
        chain_int += CHAIN_TO_INT[chain_char] + (i * len(ALPHANUMERIC))
    return chain_int
def parse_chain_feats(chain_feats, scale_factor=1.):
    ca_idx = residue_constants.atom_order['CA']
    chain_feats['bb_mask'] = chain_feats['atom_mask'][:, ca_idx]
    bb_pos = chain_feats['atom_positions'][:, ca_idx]
    bb_center = np.sum(bb_pos, axis=0) / (np.sum(chain_feats['bb_mask']) + 1e-5)
    centered_pos = chain_feats['atom_positions'] - bb_center[None, None, :]
    scaled_pos = centered_pos / scale_factor
    chain_feats['atom_positions'] = scaled_pos * chain_feats['atom_mask'][..., None]
    chain_feats['bb_positions'] = chain_feats['atom_positions'][:, ca_idx]
    return chain_feats
def concat_np_features(
        np_dicts: List[Dict[str, np.ndarray]], add_batch_dim: bool):
    """Performs a nested concatenation of feature dicts.
    Args:
        np_dicts: list of dicts with the same structure.
            Each dict must have the same keys and numpy arrays as the values.
        add_batch_dim: whether to add a batch dimension to each feature.
    Returns:
        A single dict with all the features concatenated.
    """
    combined_dict = collections.defaultdict(list)
    for chain_dict in np_dicts:
        for feat_name, feat_val in chain_dict.items():
            if add_batch_dim:
                feat_val = feat_val[None]
            combined_dict[feat_name].append(feat_val)
    # Concatenate each feature
    for feat_name, feat_vals in combined_dict.items():
        combined_dict[feat_name] = np.concatenate(feat_vals, axis=0)
    return combined_dict
def center_zero(pos: torch.Tensor, batch_indexes: torch.LongTensor) -> torch.Tensor:
    """
    Move the molecule center to zero for sparse position tensors.
    Args:
        pos: [N, 3] batch positions of atoms in the molecule in sparse batch format.
        batch_indexes: [N] batch index for each atom in sparse batch format.
    Returns:
        pos: [N, 3] zero-centered batch positions of atoms in the molecule in sparse batch format.
    """
    assert len(pos.shape) == 2 and pos.shape[-1] == 3, "pos must have shape [N, 3]"
    means = scatter(pos, batch_indexes, dim=0, reduce="mean")
    return pos - means[batch_indexes]
@torch.no_grad()
def align_structures(
    batch_positions: torch.Tensor,
    batch_indices: torch.Tensor,
    reference_positions: torch.Tensor,
    broadcast_reference: bool = False,
):
    """
    Align structures in a ChemGraph batch to a reference, e.g. for RMSD computation. This uses the
    sparse formulation of pytorch geometric. If the ChemGraph is composed of a single system, then
    the reference can be given as a single structure and broadcasted. Returns the structure
    coordinates shifted to the geometric center and the batch structures rotated to match the
    reference structures. Uses the Kabsch algorithm (see e.g. [kabsch_align1]_). No permutation of
    atoms is carried out.
    Args:
        batch_positions (Tensor): Batch of structures (e.g. from ChemGraph) which should be aligned
          to a reference.
        batch_indices (Tensor): Index tensor mapping each node / atom in batch to the respective
          system (e.g. batch attribute of ChemGraph batch).
        reference_positions (Tensor): Reference structure. Can either be a batch of structures or a
          single structure. In the second case, broadcasting is possible if the input batch is
          composed exclusively of this structure.
        broadcast_reference (bool, optional): If reference batch contains only a single structure,
          broadcast this structure to match the ChemGraph batch. Defaults to False.
    Returns:
        Tuple[torch.Tensor, torch.Tensor]: Tensors containing the centered positions of batch
          structures rotated into the reference and the centered reference batch.
    References
    ----------
    .. [kabsch_align1] Lawrence, Bernal, Witzgall:
       A purely algebraic justification of the Kabsch-Umeyama algorithm.
       Journal of research of the National Institute of Standards and Technology, 124, 1. 2019.
    """
    # Minimize || Q @ R.T - P ||, which is the same as || Q - P @ R ||
    # batch_positions     -> P [BN x 3]
    # reference_positions -> Q [B / BN x 3]
    if batch_positions.shape[0] != reference_positions.shape[0]:
        if broadcast_reference:
            # Get number of systems in batch and broadcast reference structure.
            # This assumes, all systems in the current batch correspond to the reference system.
            # Typically always the case during evaluation.
            num_molecules = int(torch.max(batch_indices) + 1)
            reference_positions = reference_positions.repeat(num_molecules, 1)
        else:
            raise ValueError("Mismatch in batch dimensions.")
    # Center structures at origin (takes care of translation alignment)
    batch_positions = center_zero(batch_positions, batch_indices)
    reference_positions = center_zero(reference_positions, batch_indices)
    # Compute covariance matrix for optimal rotation (Q.T @ P) -> [B x 3 x 3].
    cov = scatter_add(
        batch_positions[:, None, :] * reference_positions[:, :, None], batch_indices, dim=0
    )
    # Perform singular value decomposition. (all [B x 3 x 3])
    u, _, v_t = torch.linalg.svd(cov)
    # Convenience transposes.
    u_t = u.transpose(1, 2)
    v = v_t.transpose(1, 2)
    # Compute rotation matrix correction for ensuring right-handed coordinate system
    # For comparison with other sources: det(AB) = det(A)*det(B) and det(A) = det(A.T)
    sign_correction = torch.sign(torch.linalg.det(torch.bmm(v, u_t)))
    # Correct transpose of U: diag(1, 1, sign_correction) @ U.T
    u_t[:, 2, :] = u_t[:, 2, :] * sign_correction[:, None]
    # Compute optimal rotation matrix (R = V @ diag(1, 1, sign_correction) @ U.T).
    rotation_matrices = torch.bmm(v, u_t)
    # print('batch_positions=',batch_positions.dtype)
    # print('rotation_matrices=',rotation_matrices.dtype)
    rotation_matrices = rotation_matrices.type(batch_positions.dtype)
    # Rotate batch positions P to optimal alignment with Q (P @ R)
    batch_positions_rotated = torch.bmm(
        batch_positions[:, None, :],
        rotation_matrices[batch_indices],
    ).squeeze(1)
    return batch_positions_rotated, reference_positions, rotation_matrices
def parse_pdb_feats(
        pdb_name: str,
        pdb_path: str,
        scale_factor=1.,
        # TODO: Make the default behaviour read all chains.
        chain_id='A',
    ):
    """
    Args:
        pdb_name: name of PDB to parse.
        pdb_path: path to PDB file to read.
        scale_factor: factor to scale atom positions.
        mean_center: whether to mean center atom positions.
    Returns:
        Dict with CHAIN_FEATS features extracted from PDB with specified
        preprocessing.
    """
    parser = PDB.PDBParser(QUIET=True)
    structure = parser.get_structure(pdb_name, pdb_path)
    struct_chains = {
        chain.id: chain
        for chain in structure.get_chains()}
    def _process_chain_id(x):
        chain_prot = process_chain(struct_chains[x], x)
        chain_dict = dataclasses.asdict(chain_prot)
        # Process features
        feat_dict = {x: chain_dict[x] for x in CHAIN_FEATS}
        return parse_chain_feats(
            feat_dict, scale_factor=scale_factor)
    if isinstance(chain_id, str):
        return _process_chain_id(chain_id)
    elif isinstance(chain_id, list):
        return {
            x: _process_chain_id(x) for x in chain_id
        }
    elif chain_id is None:
        return {
            x: _process_chain_id(x) for x in struct_chains
        }
    else:
        raise ValueError(f'Unrecognized chain list {chain_id}')
def rigid_transform_3D(A, B, verbose=False):
    # Transforms A to look like B
    # https://github.com/nghiaho12/rigid_transform_3D
    assert A.shape == B.shape
    A = A.T
    B = B.T
    num_rows, num_cols = A.shape
    if num_rows != 3:
        raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}")
    num_rows, num_cols = B.shape
    if num_rows != 3:
        raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}")
    # find mean column wise
    centroid_A = np.mean(A, axis=1)
    centroid_B = np.mean(B, axis=1)
    # ensure centroids are 3x1
    centroid_A = centroid_A.reshape(-1, 1)
    centroid_B = centroid_B.reshape(-1, 1)
    # subtract mean
    Am = A - centroid_A
    Bm = B - centroid_B
    H = Am @ np.transpose(Bm)
    # sanity check
    #if linalg.matrix_rank(H) < 3:
    #    raise ValueError("rank of H = {}, expecting 3".format(linalg.matrix_rank(H)))
    # find rotation
    U, S, Vt = np.linalg.svd(H)
    R = Vt.T @ U.T
    # special reflection case
    reflection_detected = False
    if np.linalg.det(R) < 0:
        if verbose:
            print("det(R) < R, reflection detected!, correcting for it ...")
        Vt[2,:] *= -1
        R = Vt.T @ U.T
        reflection_detected = True
    t = -R @ centroid_A + centroid_B
    optimal_A = R @ A + t
    return optimal_A.T, R, t, reflection_detected
def process_chain(chain: Chain, chain_id: str) -> Protein:
    """Convert a PDB chain object into a AlphaFold Protein instance.
    Forked from alphafold.common.protein.from_pdb_string
    WARNING: All non-standard residue types will be converted into UNK. All
        non-standard atoms will be ignored.
    Took out lines 94-97 which don't allow insertions in the PDB.
    Sabdab uses insertions for the chothia numbering so we need to allow them.
    Took out lines 110-112 since that would mess up CDR numbering.
    Args:
        chain: Instance of Biopython's chain class.
    Returns:
        Protein object with protein features.
    """
    atom_positions = []
    aatype = []
    atom_mask = []
    residue_index = []
    b_factors = []
    chain_ids = []
    for res in chain:
        res_shortname = residue_constants.restype_3to1.get(res.resname, 'X')
        restype_idx = residue_constants.restype_order.get(
            res_shortname, residue_constants.restype_num)
        pos = np.zeros((residue_constants.atom_type_num, 3))
        mask = np.zeros((residue_constants.atom_type_num,))
        res_b_factors = np.zeros((residue_constants.atom_type_num,))
        for atom in res:
            if atom.name not in residue_constants.atom_types:
                continue
            pos[residue_constants.atom_order[atom.name]] = atom.coord
            mask[residue_constants.atom_order[atom.name]] = 1.
            res_b_factors[residue_constants.atom_order[atom.name]
                          ] = atom.bfactor
        aatype.append(restype_idx)
        atom_positions.append(pos)
        atom_mask.append(mask)
        residue_index.append(res.id[1])
        b_factors.append(res_b_factors)
        chain_ids.append(chain_id)
    return Protein(
        atom_positions=np.array(atom_positions),
        atom_mask=np.array(atom_mask),
        aatype=np.array(aatype),
        residue_index=np.array(residue_index),
        chain_index=np.array(chain_ids),
        b_factors=np.array(b_factors))
 | 
