File size: 10,982 Bytes
ca7299e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import argparse
import dataclasses
import functools as fn
import pandas as pd
import os
import tree
import torch
import multiprocessing as mp
import time
import esm
from Bio import PDB
import numpy as np
from data import utils as du
from data import parsers
from data import errors
from data.repr import get_pre_repr
from openfold.data import data_transforms
from openfold.utils import rigid_utils
from data.cal_trans_rotmats import cal_trans_rotmats
from data.ESMfold_pred import ESMFold_Pred
def process_file(file_path: str, write_dir: str):
"""Processes protein file into usable, smaller pickles.
Args:
file_path: Path to file to read.
write_dir: Directory to write pickles to.
Returns:
Saves processed protein to pickle and returns metadata.
Raises:
DataError if a known filtering rule is hit.
All other errors are unexpected and are propogated.
"""
metadata = {}
pdb_name = os.path.basename(file_path).replace('.pdb', '')
metadata['pdb_name'] = pdb_name
processed_path = os.path.join(write_dir, f'{pdb_name}.pkl')
metadata['processed_path'] = os.path.abspath(processed_path)
metadata['raw_path'] = file_path
parser = PDB.PDBParser(QUIET=True)
structure = parser.get_structure(pdb_name, file_path)
# Extract all chains
struct_chains = {
chain.id.upper(): chain
for chain in structure.get_chains()}
metadata['num_chains'] = len(struct_chains)
# Extract features
struct_feats = []
all_seqs = set()
for chain_id, chain in struct_chains.items():
# Convert chain id into int
chain_id = du.chain_str_to_int(chain_id)
chain_prot = parsers.process_chain(chain, chain_id)
chain_dict = dataclasses.asdict(chain_prot)
chain_dict = du.parse_chain_feats(chain_dict)
all_seqs.add(tuple(chain_dict['aatype']))
struct_feats.append(chain_dict)
if len(all_seqs) == 1:
metadata['quaternary_category'] = 'homomer'
else:
metadata['quaternary_category'] = 'heteromer'
complex_feats = du.concat_np_features(struct_feats, False)
# Process geometry features
complex_aatype = complex_feats['aatype']
metadata['seq_len'] = len(complex_aatype)
modeled_idx = np.where(complex_aatype != 20)[0]
if np.sum(complex_aatype != 20) == 0:
raise errors.LengthError('No modeled residues')
min_modeled_idx = np.min(modeled_idx)
max_modeled_idx = np.max(modeled_idx)
metadata['modeled_seq_len'] = max_modeled_idx - min_modeled_idx + 1
complex_feats['modeled_idx'] = modeled_idx
# try:
# # MDtraj
# traj = md.load(file_path)
# # SS calculation
# pdb_ss = md.compute_dssp(traj, simplified=True)
# # DG calculation
# pdb_dg = md.compute_rg(traj)
# # os.remove(file_path)
# except Exception as e:
# # os.remove(file_path)
# raise errors.DataError(f'Mdtraj failed with error {e}')
# chain_dict['ss'] = pdb_ss[0]
# metadata['coil_percent'] = np.sum(pdb_ss == 'C') / metadata['modeled_seq_len']
# metadata['helix_percent'] = np.sum(pdb_ss == 'H') / metadata['modeled_seq_len']
# metadata['strand_percent'] = np.sum(pdb_ss == 'E') / metadata['modeled_seq_len']
# # Radius of gyration
# metadata['radius_gyration'] = pdb_dg[0]
# Write features to pickles.
du.write_pkl(processed_path, complex_feats)
return metadata
def process_serially(all_paths, write_dir):
all_metadata = []
for i, file_path in enumerate(all_paths):
try:
start_time = time.time()
metadata = process_file(
file_path,
write_dir)
elapsed_time = time.time() - start_time
print(f'Finished {file_path} in {elapsed_time:2.2f}s')
all_metadata.append(metadata)
except errors.DataError as e:
print(f'Failed {file_path}: {e}')
return all_metadata
def process_fn(
file_path,
verbose=None,
write_dir=None):
try:
start_time = time.time()
metadata = process_file(
file_path,
write_dir)
elapsed_time = time.time() - start_time
if verbose:
print(f'Finished {file_path} in {elapsed_time:2.2f}s')
return metadata
except errors.DataError as e:
if verbose:
print(f'Failed {file_path}: {e}')
def main(args):
pdb_dir = args.pdb_dir
all_file_paths = [
os.path.join(pdb_dir, x)
for x in os.listdir(args.pdb_dir) if '.pdb' in x]
total_num_paths = len(all_file_paths)
write_dir = args.write_dir
if not os.path.exists(write_dir):
os.makedirs(write_dir)
if args.debug:
metadata_file_name = 'metadata_debug.csv'
else:
metadata_file_name = 'metadata.csv'
metadata_path = os.path.join(write_dir, metadata_file_name)
print(f'Files will be written to {write_dir}')
# Process each mmcif file
if args.num_processes == 1 or args.debug:
all_metadata = process_serially(
all_file_paths,
write_dir)
else:
_process_fn = fn.partial( # fix some args of fn
process_fn,
verbose=args.verbose,
write_dir=write_dir)
with mp.Pool(processes=args.num_processes) as pool:
all_metadata = pool.map(_process_fn, all_file_paths) # all jobs to be done are saved in a iterable object (such as list)
all_metadata = [x for x in all_metadata if x is not None]
metadata_df = pd.DataFrame(all_metadata)
metadata_df.to_csv(metadata_path, index=False)
succeeded = len(all_metadata)
print(
f'Finished processing {succeeded}/{total_num_paths} files')
def cal_repr(processed_file_path, model_esm2, alphabet, batch_converter, esm_device):
print(f'cal_repr for {processed_file_path}')
processed_feats_org = du.read_pkl(processed_file_path)
processed_feats = du.parse_chain_feats(processed_feats_org)
# Only take modeled residues.
modeled_idx = processed_feats['modeled_idx']
min_idx = np.min(modeled_idx)
max_idx = np.max(modeled_idx)
# del processed_feats['modeled_idx']
processed_feats = tree.map_structure(
lambda x: x[min_idx:(max_idx+1)], processed_feats)
# Run through OpenFold data transforms.
chain_feats = {
'aatype': torch.tensor(processed_feats['aatype']).long(),
'all_atom_positions': torch.tensor(processed_feats['atom_positions']).double(),
'all_atom_mask': torch.tensor(processed_feats['atom_mask']).double()
}
chain_feats = data_transforms.atom37_to_frames(chain_feats)
rigids_1 = rigid_utils.Rigid.from_tensor_4x4(chain_feats['rigidgroups_gt_frames'])[:, 0]
rotmats_1 = rigids_1.get_rots().get_rot_mats()
trans_1 = rigids_1.get_trans()
# res_idx = processed_feats['residue_index']
node_repr_pre, pair_repr_pre = get_pre_repr(chain_feats['aatype'], model_esm2, alphabet, batch_converter, device = esm_device) # (B,L,d_node_pre=1280), (B,L,L,d_edge_pre=20)
node_repr_pre = node_repr_pre[0].cpu()
pair_repr_pre = pair_repr_pre[0].cpu()
out = {
'aatype': chain_feats['aatype'],
'rotmats_1': rotmats_1,
'trans_1': trans_1, # (L,3)
'res_mask': torch.tensor(processed_feats['bb_mask']).int(),
'bb_positions': processed_feats['bb_positions'],
'all_atom_positions':chain_feats['all_atom_positions'],
'node_repr_pre':node_repr_pre,
'pair_repr_pre':pair_repr_pre,
}
du.write_pkl(processed_file_path, out)
def cal_static_structure(processed_file_path, raw_pdb_file, ESMFold):
output_total = du.read_pkl(processed_file_path)
save_dir = os.path.join(os.path.dirname(raw_pdb_file), 'ESMFold_Pred_results')
os.makedirs(save_dir, exist_ok=True)
save_path = os.path.join(save_dir, os.path.basename(processed_file_path)[:6]+'_esmfold.pdb')
if not os.path.exists(save_path):
print(f'cal_static_structure for {processed_file_path}')
ESMFold.predict_str(raw_pdb_file, save_path)
trans, rotmats = cal_trans_rotmats(save_path)
output_total['trans_esmfold'] = trans
output_total['rotmats_esmfold'] = rotmats
du.write_pkl(processed_file_path, output_total)
def merge_pdb(metadata_path, traj_info_file, valid_seq_file, merged_output_file):
df1 = pd.read_csv(metadata_path)
df2 = pd.read_csv(traj_info_file)
df3 = pd.read_csv(valid_seq_file)
# 获取文件名
df1['traj_filename'] = [os.path.basename(i) for i in df1['raw_path']]
# 合并数据
merged = df1.merge(df2[['traj_filename', 'energy']], on='traj_filename', how='left')
merged['is_trainset'] = ~merged['traj_filename'].str[:6].isin(df3['file'])
# 保存结果
merged.to_csv(merged_output_file, index=False)
print('merge complete!')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pdb_dir", type=str, default="./dataset/ATLAS/select")
parser.add_argument("--write_dir", type=str, default="./dataset/ATLAS/select/pkl")
parser.add_argument("--csv_name", type=str, default="metadata.csv")
parser.add_argument("--debug", type=bool, default=False)
parser.add_argument("--num_processes", type=int, default=48)
parser.add_argument('--verbose', help='Whether to log everything.',action='store_true')
parser.add_argument("--esm_device", type=str, default='cuda')
parser.add_argument("--traj_info_file", type=str, default='./dataset/ATLAS/select/traj_info_select.csv')
parser.add_argument("--valid_seq_file", type=str, default='./inference/valid_seq.csv')
parser.add_argument("--merged_output_file", type=str, default='./dataset/ATLAS/select/pkl/metadata_merged.csv')
args = parser.parse_args()
# process .pdb to .pkl
main(args)
# cal_repr
csv_path = os.path.join(args.write_dir, args.csv_name)
pdb_csv = pd.read_csv(csv_path)
pdb_csv = pdb_csv.sort_values('modeled_seq_len', ascending=False)
model_esm2, alphabet = esm.pretrained.esm2_t33_650M_UR50D()
batch_converter = alphabet.get_batch_converter()
model_esm2.eval()
model_esm2.requires_grad_(False)
model_esm2.to(args.esm_device)
for idx in range(len(pdb_csv)):
cal_repr(pdb_csv.iloc[idx]['processed_path'], model_esm2, alphabet, batch_converter, args.esm_device)
# cal_static_structure
csv_path = os.path.join(args.write_dir, args.csv_name)
pdb_csv = pd.read_csv(csv_path)
ESMFold = ESMFold_Pred(device = args.esm_device)
for idx in range(len(pdb_csv)):
cal_static_structure(pdb_csv.iloc[idx]['processed_path'], pdb_csv.iloc[idx]['raw_path'], ESMFold)
# merge csv
csv_path = os.path.join(args.write_dir, args.csv_name)
merge_pdb(csv_path, args.traj_info_file, args.valid_seq_file, args.merged_output_file)
|