File size: 12,043 Bytes
ca7299e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities for calculating all atom representations.
Code adapted from OpenFold.
"""
import torch
from openfold.data import data_transforms
from openfold.np import residue_constants
from openfold.utils import rigid_utils as ru
from data import utils as du
Rigid = ru.Rigid
Rotation = ru.Rotation
# Residue Constants from OpenFold/AlphaFold2.
IDEALIZED_POS = torch.tensor(residue_constants.restype_atom14_rigid_group_positions)
DEFAULT_FRAMES = torch.tensor(residue_constants.restype_rigid_group_default_frame)
ATOM_MASK = torch.tensor(residue_constants.restype_atom14_mask)
GROUP_IDX = torch.tensor(residue_constants.restype_atom14_to_rigid_group)
IDEALIZED_POS_37 = torch.tensor(residue_constants.restype_atom37_rigid_group_positions)
ATOM_MASK_37 = torch.tensor(residue_constants.restype_atom37_mask)
GROUP_IDX_37 = torch.tensor(residue_constants.restype_atom37_to_rigid_group)
def to_atom37(trans, rots, aatype=None, torsions_with_CB=None, get_mask=False):
num_batch, num_res, _ = trans.shape
if torsions_with_CB is None: # (B,L,)
torsions_with_CB = torch.concat(
[torch.zeros((num_batch,num_res,8,1),device=trans.device),
torch.ones((num_batch,num_res,8,1),device=trans.device)],
dim=-1
) # (B,L,8,2)
# final_atom37 = compute_backbone(
# du.create_rigid(rots, trans),
# torch.zeros(num_batch, num_res, 2, device=trans.device)
# )[0]
final_atom37, atom37_mask = compute_atom37_pos(
du.create_rigid(rots, trans),
torsions_with_CB,
aatype=aatype,
)[:2] # (B,L,37,3)
if get_mask:
return final_atom37, atom37_mask
else:
return final_atom37
def torsion_angles_to_frames(
r: Rigid, # type: ignore [valid-type]
alpha: torch.Tensor,
aatype: torch.Tensor,
bb_rot = None
):
"""Conversion method of torsion angles to frames provided the backbone.
Args:
r: Backbone rigid groups.
alpha: Torsion angles. (B,L,7,2)
aatype: residue types.
Returns:
All 8 frames corresponding to each torsion frame.
!!! May need to set omega and fai angle to be zero !!!
"""
# [*, N, 8, 4, 4]
with torch.no_grad():
default_4x4 = DEFAULT_FRAMES.to(aatype.device)[aatype, ...] # type: ignore [attr-defined]
# [*, N, 8] transformations, i.e.
# One [*, N, 8, 3, 3] rotation matrix and
# One [*, N, 8, 3] translation matrix
default_r = r.from_tensor_4x4(default_4x4) # (B,L,8)
if bb_rot is None:
bb_rot = alpha.new_zeros(((1,) * len(alpha.shape[:-1]))+(2,)) # (1,1,1,2)
bb_rot[..., 1] = 1
bb_rot = bb_rot.expand(*alpha.shape[:-2], -1, -1) # (B,L,1,2)
alpha = torch.cat([bb_rot, alpha], dim=-2) # (B,L,8,2)
# [*, N, 8, 3, 3]
# Produces rotation matrices of the form:
# [
# [1, 0 , 0 ],
# [0, a_2,-a_1],
# [0, a_1, a_2]
# ]
# This follows the original code rather than the supplement, which uses
# different indices.
all_rots = alpha.new_zeros(default_r.get_rots().get_rot_mats().shape) # (B,L,8,3,3)
all_rots[..., 0, 0] = 1
all_rots[..., 1, 1] = alpha[..., 1]
all_rots[..., 1, 2] = -alpha[..., 0]
all_rots[..., 2, 1:] = alpha
all_rots = Rigid(Rotation(rot_mats=all_rots), None)
all_frames = default_r.compose(all_rots)
chi2_frame_to_frame = all_frames[..., 5]
chi3_frame_to_frame = all_frames[..., 6]
chi4_frame_to_frame = all_frames[..., 7]
chi1_frame_to_bb = all_frames[..., 4]
chi2_frame_to_bb = chi1_frame_to_bb.compose(chi2_frame_to_frame)
chi3_frame_to_bb = chi2_frame_to_bb.compose(chi3_frame_to_frame)
chi4_frame_to_bb = chi3_frame_to_bb.compose(chi4_frame_to_frame)
all_frames_to_bb = Rigid.cat(
[
all_frames[..., :5],
chi2_frame_to_bb.unsqueeze(-1),
chi3_frame_to_bb.unsqueeze(-1),
chi4_frame_to_bb.unsqueeze(-1),
],
dim=-1,
)
all_frames_to_global = r[..., None].compose(all_frames_to_bb) # type: ignore [index]
return all_frames_to_global
def prot_to_torsion_angles(aatype, atom37, atom37_mask):
"""Calculate torsion angle features from protein features."""
prot_feats = {
"aatype": aatype,
"all_atom_positions": atom37,
"all_atom_mask": atom37_mask,
}
torsion_angles_feats = data_transforms.atom37_to_torsion_angles()(prot_feats)
torsion_angles = torsion_angles_feats["torsion_angles_sin_cos"]
torsion_mask = torsion_angles_feats["torsion_angles_mask"]
return torsion_angles, torsion_mask
def frames_to_atom14_pos(
r: Rigid, # type: ignore [valid-type]
aatype: torch.Tensor,
):
"""Convert frames to their idealized all atom representation.
Args:
r: All rigid groups. [B,L,8]
aatype: Residue types. [B,L]
Returns:
"""
with torch.no_grad():
group_mask = GROUP_IDX.to(aatype.device)[aatype, ...] # (B,L,14)
group_mask = torch.nn.functional.one_hot(
group_mask,
num_classes=DEFAULT_FRAMES.shape[-3], # (21,8,4,4)
) # (B,L,14,8)
frame_atom_mask = ATOM_MASK.to(aatype.device)[aatype, ...].unsqueeze(-1) # (B,L,14,1)
frame_null_pos = IDEALIZED_POS.to(aatype.device)[aatype, ...] # (B,L,14,3)
t_atoms_to_global = r[..., None, :] * group_mask # (B,L,14,8)
t_atoms_to_global = t_atoms_to_global.map_tensor_fn(lambda x: torch.sum(x, dim=-1)) # (B,L,14)
pred_positions = t_atoms_to_global.apply(frame_null_pos) # (B,L,14,3)
pred_positions = pred_positions * frame_atom_mask
return pred_positions
def frames_to_atom37_pos(
r: Rigid, # type: ignore [valid-type]
aatype: torch.Tensor,
):
"""Convert frames to their idealized all atom representation.
Args:
r: All rigid groups. [B,L]
aatype: Residue types. [B,L]
Returns:
"""
with torch.no_grad():
group_mask = GROUP_IDX_37.to(aatype.device)[aatype, ...] # (B,L,37)
group_mask = torch.nn.functional.one_hot(
group_mask,
num_classes=DEFAULT_FRAMES.shape[-3], # (21,8,4,4)
) # (B,L,37,8)
frame_atom_mask = ATOM_MASK_37.to(aatype.device)[aatype, ...].unsqueeze(-1) # (B,L,37,1)
frame_null_pos = IDEALIZED_POS_37.to(aatype.device)[aatype, ...] # (B,L,37,3)
t_atoms_to_global = r[..., None, :] * group_mask # (B,L,37,8)
t_atoms_to_global = t_atoms_to_global.map_tensor_fn(lambda x: torch.sum(x, dim=-1)) # (B,L,37)
pred_positions = t_atoms_to_global.apply(frame_null_pos) # (B,L,37,3)
pred_positions = pred_positions * frame_atom_mask
return pred_positions, frame_atom_mask[...,0]
#! may need to remove it
def compute_backbone(bb_rigids, psi_torsions, aatype=None):
torsion_angles = torch.tile(
psi_torsions[..., None, :], tuple([1 for _ in range(len(bb_rigids.shape))]) + (7, 1)
)
'''
psi_torsions[..., None, :].shape: (B,L,1,2)
torsion_angles.shape: (B,L,7,2)
bb_rigids.shape: (B,L)
'''
if aatype is None:
aatype = torch.zeros(bb_rigids.shape, device=bb_rigids.device).long()
all_frames = torsion_angles_to_frames(
bb_rigids,
torsion_angles,
aatype,
)
atom14_pos = frames_to_atom14_pos(all_frames, aatype) # (B,L,14,3)
atom37_bb_pos = torch.zeros(bb_rigids.shape + (37, 3), device=bb_rigids.device) # (B,L,37,3)
# atom14 bb order = ['N', 'CA', 'C', 'O', 'CB']
# atom37 bb order = ['N', 'CA', 'C', 'CB', 'O']
atom37_bb_pos[..., :3, :] = atom14_pos[..., :3, :]
atom37_mask = torch.any(atom37_bb_pos, axis=-1) # mask atom with all 0 xyz
return atom37_bb_pos, atom37_mask, aatype, atom14_pos
def compute_atom37_pos(bb_rigids, torsions_with_CB, aatype=None):
'''
torsions_with_CB.shape: (B,L,8,2)
bb_rigids.shape: (B,L)
'''
if aatype is None:
aatype = torch.zeros(bb_rigids.shape, device=bb_rigids.device).long()
all_frames = torsion_angles_to_frames(
bb_rigids,
torsions_with_CB[:,:,1:,:],
aatype,
bb_rot = torsions_with_CB[:,:,0:1,:],
)
atom14_pos = frames_to_atom14_pos(all_frames, aatype) # (B,L,14,3)
atom37_pos,atom37_mask = frames_to_atom37_pos(all_frames, aatype) # (B,L,37,3)
return atom37_pos, atom37_mask, aatype, atom14_pos
def calculate_neighbor_angles(R_ac, R_ab):
"""Calculate angles between atoms c <- a -> b.
Parameters
----------
R_ac: Tensor, shape = (N,3)
Vector from atom a to c.
R_ab: Tensor, shape = (N,3)
Vector from atom a to b.
Returns
-------
angle_cab: Tensor, shape = (N,)
Angle between atoms c <- a -> b.
"""
# cos(alpha) = (u * v) / (|u|*|v|)
x = torch.sum(R_ac * R_ab, dim=1) # shape = (N,)
# sin(alpha) = |u x v| / (|u|*|v|)
y = torch.cross(R_ac, R_ab).norm(dim=-1) # shape = (N,)
# avoid that for y == (0,0,0) the gradient wrt. y becomes NaN
y = torch.max(y, torch.tensor(1e-9))
angle = torch.atan2(y, x)
return angle
def vector_projection(R_ab, P_n):
"""
Project the vector R_ab onto a plane with normal vector P_n.
Parameters
----------
R_ab: Tensor, shape = (N,3)
Vector from atom a to b.
P_n: Tensor, shape = (N,3)
Normal vector of a plane onto which to project R_ab.
Returns
-------
R_ab_proj: Tensor, shape = (N,3)
Projected vector (orthogonal to P_n).
"""
a_x_b = torch.sum(R_ab * P_n, dim=-1)
b_x_b = torch.sum(P_n * P_n, dim=-1)
return R_ab - (a_x_b / b_x_b)[:, None] * P_n
def transrot_to_atom37(transrot_traj, res_mask, aatype=None, torsions_with_CB=None):
atom37_traj = []
res_mask = res_mask.detach().cpu()
num_batch = res_mask.shape[0]
for trans, rots in transrot_traj:
atom37 = to_atom37(trans, rots, aatype=aatype, torsions_with_CB=torsions_with_CB,get_mask=False)
atom37 = atom37.detach().cpu()
# batch_atom37 = []
# for i in range(num_batch):
# batch_atom37.append(
# du.adjust_oxygen_pos(atom37[i], res_mask[i])
# )
# atom37_traj.append(torch.stack(batch_atom37))
atom37_traj.append(atom37)
return atom37_traj
# def atom37_from_trans_rot(trans, rots, res_mask):
# rigids = du.create_rigid(rots, trans)
# atom37 = compute_backbone(
# rigids,
# torch.zeros(
# trans.shape[0],
# trans.shape[1],
# 2,
# device=trans.device
# )
# )[0]
# atom37 = atom37.detach().cpu()
# batch_atom37 = []
# num_batch = res_mask.shape[0]
# for i in range(num_batch):
# batch_atom37.append(
# du.adjust_oxygen_pos(atom37[i], res_mask[i])
# )
# return torch.stack(batch_atom37)
# def process_trans_rot_traj(trans_traj, rots_traj, res_mask):
# res_mask = res_mask.detach().cpu()
# atom37_traj = [
# atom37_from_trans_rot(trans, rots, res_mask)
# for trans, rots in zip(trans_traj, rots_traj)
# ]
# atom37_traj = torch.stack(atom37_traj).swapaxes(0, 1)
# return atom37_traj
|