metadata
license: apache-2.0
base_model: pszemraj/verysmol_llama-v10-rw3m_dd
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: verysmol_llama-v10-rw3m_dd-knowledge-inoc-concat-v1-vN
results: []
verysmol_llama-v10-rw3m_dd-knowledge-inoc-concat-v1-vN
This model is a fine-tuned version of pszemraj/verysmol_llama-v10-rw3m_dd on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.8876
- Accuracy: 0.4502
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00014
- train_batch_size: 16
- eval_batch_size: 16
- seed: 17514
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-06
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.0681 | 0.03 | 150 | 3.0689 | 0.4259 |
3.0113 | 0.07 | 300 | 3.0433 | 0.4278 |
2.9468 | 0.1 | 450 | 3.0362 | 0.4288 |
3.0162 | 0.13 | 600 | 3.0148 | 0.4326 |
2.9531 | 0.17 | 750 | 3.0012 | 0.4341 |
2.9282 | 0.2 | 900 | 2.9923 | 0.4358 |
2.9485 | 0.23 | 1050 | 2.9845 | 0.4357 |
2.9365 | 0.27 | 1200 | 2.9749 | 0.4375 |
2.8875 | 0.3 | 1350 | 2.9652 | 0.4391 |
2.8874 | 0.33 | 1500 | 2.9619 | 0.4402 |
2.8733 | 0.37 | 1650 | 2.9574 | 0.4408 |
2.8541 | 0.4 | 1800 | 2.9536 | 0.4403 |
2.8958 | 0.43 | 1950 | 2.9491 | 0.4414 |
2.8404 | 0.47 | 2100 | 2.9434 | 0.4427 |
2.8635 | 0.5 | 2250 | 2.9404 | 0.4425 |
2.9031 | 0.53 | 2400 | 2.9369 | 0.4428 |
2.8237 | 0.57 | 2550 | 2.9330 | 0.4440 |
2.832 | 0.6 | 2700 | 2.9318 | 0.4444 |
2.8566 | 0.63 | 2850 | 2.9305 | 0.4450 |
2.8817 | 0.67 | 3000 | 2.9286 | 0.4443 |
2.8733 | 0.7 | 3150 | 2.9268 | 0.4442 |
2.8009 | 0.73 | 3300 | 2.9227 | 0.4457 |
2.9292 | 0.77 | 3450 | 2.9229 | 0.4450 |
2.8562 | 0.8 | 3600 | 2.9193 | 0.4456 |
2.8441 | 0.83 | 3750 | 2.9188 | 0.4460 |
2.904 | 0.87 | 3900 | 2.9171 | 0.4458 |
2.857 | 0.9 | 4050 | 2.9140 | 0.4461 |
2.8344 | 0.93 | 4200 | 2.9134 | 0.4467 |
2.8382 | 0.97 | 4350 | 2.9122 | 0.4467 |
2.8227 | 1.0 | 4500 | 2.9104 | 0.4468 |
2.8121 | 1.03 | 4650 | 2.9099 | 0.4472 |
2.8127 | 1.07 | 4800 | 2.9082 | 0.4473 |
2.8013 | 1.1 | 4950 | 2.9084 | 0.4478 |
2.7983 | 1.14 | 5100 | 2.9069 | 0.4474 |
2.811 | 1.17 | 5250 | 2.9076 | 0.4480 |
2.7807 | 1.2 | 5400 | 2.9065 | 0.4471 |
2.8512 | 1.24 | 5550 | 2.9056 | 0.4483 |
2.8146 | 1.27 | 5700 | 2.9049 | 0.4478 |
2.8101 | 1.3 | 5850 | 2.9024 | 0.4482 |
2.7968 | 1.34 | 6000 | 2.9005 | 0.4484 |
2.8197 | 1.37 | 6150 | 2.9001 | 0.4481 |
2.8035 | 1.4 | 6300 | 2.8997 | 0.4488 |
2.7905 | 1.44 | 6450 | 2.8996 | 0.4488 |
2.8239 | 1.47 | 6600 | 2.8982 | 0.4487 |
2.8579 | 1.5 | 6750 | 2.8975 | 0.4492 |
2.7996 | 1.54 | 6900 | 2.8960 | 0.4492 |
2.8337 | 1.57 | 7050 | 2.8984 | 0.4490 |
2.8087 | 1.6 | 7200 | 2.8959 | 0.4492 |
2.8066 | 1.64 | 7350 | 2.8952 | 0.4499 |
2.7991 | 1.67 | 7500 | 2.8950 | 0.4492 |
2.8215 | 1.7 | 7650 | 2.8943 | 0.4496 |
2.7714 | 1.74 | 7800 | 2.8914 | 0.4501 |
2.8132 | 1.77 | 7950 | 2.8913 | 0.4500 |
2.8505 | 1.8 | 8100 | 2.8906 | 0.4502 |
2.8294 | 1.84 | 8250 | 2.8901 | 0.4502 |
2.7977 | 1.87 | 8400 | 2.8891 | 0.4499 |
2.7501 | 1.9 | 8550 | 2.8878 | 0.4505 |
2.8038 | 1.94 | 8700 | 2.8883 | 0.4504 |
2.7547 | 1.97 | 8850 | 2.8876 | 0.4502 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.2.0.dev20231017+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3