|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- smol_llama |
|
- llama2 |
|
datasets: |
|
- JeanKaddour/minipile |
|
- pszemraj/simple_wikipedia_LM |
|
- mattymchen/refinedweb-3m |
|
- BEE-spoke-data/knowledge-inoc-concat-v1 |
|
inference: |
|
parameters: |
|
max_new_tokens: 64 |
|
do_sample: true |
|
temperature: 0.8 |
|
repetition_penalty: 1.05 |
|
no_repeat_ngram_size: 4 |
|
eta_cutoff: 0.0006 |
|
renormalize_logits: true |
|
widget: |
|
- text: My name is El Microondas the Wise, and |
|
example_title: El Microondas |
|
- text: Kennesaw State University is a public |
|
example_title: Kennesaw State University |
|
- text: Bungie Studios is an American video game developer. They are most famous for |
|
developing the award winning Halo series of video games. They also made Destiny. |
|
The studio was founded |
|
example_title: Bungie |
|
- text: The Mona Lisa is a world-renowned painting created by |
|
example_title: Mona Lisa |
|
- text: The Harry Potter series, written by J.K. Rowling, begins with the book titled |
|
example_title: Harry Potter Series |
|
- text: 'Question: I have cities, but no houses. I have mountains, but no trees. I |
|
have water, but no fish. What am I? |
|
|
|
Answer:' |
|
example_title: Riddle |
|
- text: The process of photosynthesis involves the conversion of |
|
example_title: Photosynthesis |
|
- text: Jane went to the store to buy some groceries. She picked up apples, oranges, |
|
and a loaf of bread. When she got home, she realized she forgot |
|
example_title: Story Continuation |
|
- text: 'Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph, |
|
and another train leaves Station B at 10:00 AM and travels at 80 mph, when will |
|
they meet if the distance between the stations is 300 miles? |
|
|
|
To determine' |
|
example_title: Math Problem |
|
- text: In the context of computer programming, an algorithm is |
|
example_title: Algorithm Definition |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: smol_llama-220M-GQA |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 24.83 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 29.76 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 25.85 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 44.55 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 50.99 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 0.68 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 23.86 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 3.04 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 0.0 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 0.78 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 9.07 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 1.66 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BEE-spoke-data/smol_llama-220M-GQA |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
|
|
# smol_llama: 220M GQA |
|
|
|
|
|
A small 220M param (total) decoder model. This is the first version of the model. |
|
|
|
- 1024 hidden size, 10 layers |
|
- GQA (32 heads, 8 key-value), context length 2048 |
|
- train-from-scratch on one GPU :) |
|
|
|
## Links |
|
|
|
[Here](https://huggingface.co/collections/BEE-spoke-data/finetuned-smol-220m-65998b080ae723e79c830f83) are some fine-tunes we did, but there are many more possibilities out there! |
|
|
|
- instruct |
|
- openhermes - [link](https://huggingface.co/BEE-spoke-data/smol_llama-220M-openhermes) |
|
- open-instruct - [link](https://huggingface.co/BEE-spoke-data/smol_llama-220M-open_instruct) |
|
- code |
|
- python (pypi) - [link](https://huggingface.co/BEE-spoke-data/beecoder-220M-python) |
|
- zephyr DPO tune |
|
- SFT - [link](https://huggingface.co/BEE-spoke-data/zephyr-220m-sft-full) |
|
- full DPO - [link](https://huggingface.co/BEE-spoke-data/zephyr-220m-dpo-full) |
|
|
|
--- |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_BEE-spoke-data__smol_llama-220M-GQA) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |29.44| |
|
|AI2 Reasoning Challenge (25-Shot)|24.83| |
|
|HellaSwag (10-Shot) |29.76| |
|
|MMLU (5-Shot) |25.85| |
|
|TruthfulQA (0-shot) |44.55| |
|
|Winogrande (5-shot) |50.99| |
|
|GSM8k (5-shot) | 0.68| |
|
|
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_BEE-spoke-data__smol_llama-220M-GQA) |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|Avg. | 6.62| |
|
|IFEval (0-Shot) |23.86| |
|
|BBH (3-Shot) | 3.04| |
|
|MATH Lvl 5 (4-Shot)| 0.00| |
|
|GPQA (0-shot) | 0.78| |
|
|MuSR (0-shot) | 9.07| |
|
|MMLU-PRO (5-shot) | 1.66| |
|
|
|
|