|
--- |
|
base_model: BEE-spoke-data/mega-encoder-small-16k-v1 |
|
library_name: sentence-transformers |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
- 16k |
|
- efficient attention |
|
license: artistic-2.0 |
|
datasets: |
|
- pszemraj/synthetic-text-similarity |
|
language: |
|
- en |
|
--- |
|
|
|
# mega-small-embed-synthSTS-16384: v1 |
|
|
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/38Yc1IgU4bH92Wyb43J2I.png" alt="image/png" style="max-width: 75%;"> |
|
|
|
This [Sentence Transformer Model](https://www.SBERT.net) converts sentences and paragraphs into a 768-dimensional vector space suitable for tasks such as clustering and semantic search. |
|
- This model focuses on the similarity of long documents; use it for comparing embeddings of long text documents |
|
- For more info, see the `pszemraj/synthetic-text-similarity` dataset used for training |
|
- Pre-trained and tuned for a context length of 16,384 |
|
- This initial version may be updated in the future. |
|
|
|
## Usage |
|
|
|
|
|
Regardless of method, you will need to have this specific fork of transformers installed unless you want to get [errors related to padding](https://github.com/UKPLab/sentence-transformers/issues/2540): |
|
|
|
```sh |
|
pip install -U git+https://github.com/pszemraj/transformers.git@mega-upgrades --force-reinstall --no-deps |
|
``` |
|
|
|
### Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('BEE-spoke-data/mega-small-embed-synthSTS-16384-v1') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
|
|
### Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('BEE-spoke-data/mega-small-embed-synthSTS-16384-v1') |
|
model = AutoModel.from_pretrained('BEE-spoke-data/mega-small-embed-synthSTS-16384-v1') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters: |
|
``` |
|
{'loss': 'CosineSimilarityLoss', 'matryoshka_dims': [768, 512, 256, 128, 64], 'matryoshka_weights': [1, 1, 1, 1, 1], 'n_dims_per_step': -1} |
|
``` |
|
|
|
**arch** |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 16384, 'do_lower_case': False}) with Transformer model: MegaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |