File size: 4,124 Bytes
c306437 aa57866 c306437 d9e0489 ec22b5c c306437 d9e0489 c306437 d5cd64c 335f3a8 f5ce63b 9827c76 d04a219 c306437 ec22b5c fbb48b2 ec22b5c c306437 d9e0489 c306437 ec22b5c c306437 d9e0489 c306437 ec22b5c c306437 ec22b5c c306437 ec22b5c c306437 ec22b5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
base_model: BEE-spoke-data/mega-encoder-small-16k-v1
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- 16k
- efficient attention
license: artistic-2.0
datasets:
- pszemraj/synthetic-text-similarity
language:
- en
---
# mega-small-embed-synthSTS-16384: v1
<img src="https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/38Yc1IgU4bH92Wyb43J2I.png" alt="image/png" style="max-width: 75%;">
This [Sentence Transformer Model](https://www.SBERT.net) converts sentences and paragraphs into a 768-dimensional vector space suitable for tasks such as clustering and semantic search.
- This model focuses on the similarity of long documents; use it for comparing embeddings of long text documents
- For more info, see the `pszemraj/synthetic-text-similarity` dataset used for training
- Pre-trained and tuned for a context length of 16,384
- This initial version may be updated in the future.
## Usage
Regardless of method, you will need to have this specific fork of transformers installed unless you want to get [errors related to padding](https://github.com/UKPLab/sentence-transformers/issues/2540):
```sh
pip install -U git+https://github.com/pszemraj/transformers.git@mega-upgrades --force-reinstall --no-deps
```
### Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('BEE-spoke-data/mega-small-embed-synthSTS-16384-v1')
embeddings = model.encode(sentences)
print(embeddings)
```
### Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('BEE-spoke-data/mega-small-embed-synthSTS-16384-v1')
model = AutoModel.from_pretrained('BEE-spoke-data/mega-small-embed-synthSTS-16384-v1')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Training
The model was trained with the parameters:
**Loss**:
`sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters:
```
{'loss': 'CosineSimilarityLoss', 'matryoshka_dims': [768, 512, 256, 128, 64], 'matryoshka_weights': [1, 1, 1, 1, 1], 'n_dims_per_step': -1}
```
**arch**
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 16384, 'do_lower_case': False}) with Transformer model: MegaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
``` |