File size: 5,069 Bytes
8eaf377 ba51bc8 fb40c4a 8eaf377 0734549 8eaf377 3796f48 8eaf377 3796f48 a1f7963 8eaf377 3796f48 44306b6 21d1dd9 c40464d cd0ea4a c40464d 380ff73 cd0ea4a affb7f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
datasets:
- BEE-spoke-data/bees-internal
language:
- en
license: apache-2.0
---
# BeeTokenizer
> note: this is **literally** a tokenizer trained on beekeeping text
After minutes of hard work, it is now available.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("BEE-spoke-data/BeeTokenizer")
test_string = "When dealing with Varroa destructor mites, it's crucial to administer the right acaricides during the late autumn months, but only after ensuring that the worker bee population is free from pesticide contamination."
output = tokenizer(test_string)
print(f"Test string: {test_string}")
print(f"Tokens ({len(output.input_ids)}):\n\t{output.input_ids}")
```
## Notes
1. the default tokenizer (on branch `main`) has a vocab size of 32000
2. based on the `SentencePieceBPETokenizer` class
<details>
<summary>How to Tokenize Text and Retrieve Offsets</summary>
To tokenize a complex sentence and also retrieve the offsets mapping, you can use the following Python code snippet:
```python
from transformers import AutoTokenizer
# Initialize the tokenizer
tokenizer = AutoTokenizer.from_pretrained("BEE-spoke-data/BeeTokenizer")
# Sample complex sentence related to beekeeping
test_string = "When dealing with Varroa destructor mites, it's crucial to administer the right acaricides during the late autumn months, but only after ensuring that the worker bee population is free from pesticide contamination."
# Tokenize the input string and get the offsets mapping
output = tokenizer.encode_plus(test_string, return_offsets_mapping=True)
print(f"Test string: {test_string}")
# Tokens
tokens = tokenizer.convert_ids_to_tokens(output['input_ids'])
print(f"Tokens: {tokens}")
# Offsets
offsets = output['offset_mapping']
print(f"Offsets: {offsets}")
```
This should result in the following (_Feb '24 version_):
```
>>> print(f"Test string: {test_string}")
Test string: When dealing with Varroa destructor mites, it's crucial to administer the right acaricides during the late autumn months, but only after ensuring that the worker bee population is free from pesticide contamination.
>>>
>>> # Tokens
>>> tokens = tokenizer.convert_ids_to_tokens(output['input_ids'])
>>> print(f"Tokens: {tokens}")
Tokens: ['When', '▁dealing', '▁with', '▁Varroa', '▁destructor', '▁mites,', "▁it's", '▁cru', 'cial', '▁to', '▁administer', '▁the', '▁right', '▁acar', 'icides', '▁during', '▁the', '▁late', '▁autumn', '▁months,', '▁but', '▁only', '▁after', '▁ensuring', '▁that', '▁the', '▁worker', '▁bee', '▁population', '▁is', '▁free', '▁from', '▁pesticide', '▁contam', 'ination.']
>>>
>>> # Offsets
>>> offsets = output['offset_mapping']
>>> print(f"Offsets: {offsets}")
Offsets: [(0, 4), (4, 12), (12, 17), (17, 24), (24, 35), (35, 42), (42, 47), (47, 51), (51, 55), (55, 58), (58, 69), (69, 73), (73, 79), (79, 84), (84, 90), (90, 97), (97, 101), (101, 106), (106, 113), (113, 121), (121, 125), (125, 130), (130, 136), (136, 145), (145, 150), (150, 154), (154, 161), (161, 165), (165, 176), (176, 179), (179, 184), (184, 189), (189, 199), (199, 206), (206, 214)]
```
if you compare this to the output of [the llama tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) (below), you can quickly see which is more suited for beekeeping related language modeling.
```
>>> print(f"Test string: {test_string}")
Test string: When dealing with Varroa destructor mites, it's crucial to administer the right acaricides during the late autumn months, but only after ensuring that the worker bee population is free from pesticide contamination.
>>> # Tokens
>>> tokens = tokenizer.convert_ids_to_tokens(output['input_ids'])
>>> print(f"Tokens: {toke>>> print(f"Tokens: {tokens}")
Tokens: ['<s>', '▁When', '▁dealing', '▁with', '▁Var', 'ro', 'a', '▁destruct', 'or', '▁mit', 'es', ',', '▁it', "'", 's', '▁cru', 'cial', '▁to', '▁admin', 'ister', '▁the', '▁right', '▁ac', 'ar', 'ic', 'ides', '▁during', '▁the', '▁late', '▁aut', 'umn', '▁months', ',', '▁but', '▁only', '▁after', '▁ens', 'uring', '▁that', '▁the', '▁worker', '▁be', 'e', '▁population', '▁is', '▁free', '▁from', '▁p', 'estic', 'ide', '▁cont', 'am', 'ination', '.']
>>> offsets = output['offset_mapping']
>>> print(f"Offsets: {offsets}")
Offsets: [(0, 0), (0, 4), (4, 12), (12, 17), (17, 21), (21, 23), (23, 24), (24, 33), (33, 35), (35, 39), (39, 41), (41, 42), (42, 45), (45, 46), (46, 47), (47, 51), (51, 55), (55, 58), (58, 64), (64, 69), (69, 73), (73, 79), (79, 82), (82, 84), (84, 86), (86, 90), (90, 97), (97, 101), (101, 106), (106, 110), (110, 113), (113, 120), (120, 121), (121, 125), (125, 130), (130, 136), (136, 140), (140, 145), (145, 150), (150, 154), (154, 161), (161, 164), (164, 165), (165, 176), (176, 179), (179, 184), (184, 189), (189, 191), (191, 196), (196, 199), (199, 204), (204, 206), (206, 213), (213, 214)]
```
|