File size: 2,295 Bytes
c416453 76efc18 c416453 76efc18 c416453 76efc18 c416453 76efc18 c416453 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: wav2vec2-detect-toxic-th
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice
type: common_voice
config: th
split: validation
args: th
metrics:
- name: Wer
type: wer
value: 0.4557774607703281
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-detect-toxic-th
This model is a fine-tuned version of [airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0926
- Wer: 0.4558
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 30
- num_epochs: 35
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.4829 | 3.23 | 100 | 3.4277 | 1.0 |
| 3.301 | 6.45 | 200 | 3.2260 | 1.0 |
| 2.3 | 9.68 | 300 | 1.2590 | 0.5292 |
| 1.1601 | 12.9 | 400 | 1.0578 | 0.5892 |
| 0.9381 | 16.13 | 500 | 1.0390 | 0.4957 |
| 0.8211 | 19.35 | 600 | 1.0411 | 0.4679 |
| 0.7227 | 22.58 | 700 | 1.0614 | 0.4558 |
| 0.6805 | 25.81 | 800 | 1.0750 | 0.4579 |
| 0.6389 | 29.03 | 900 | 1.0678 | 0.4629 |
| 0.6045 | 32.26 | 1000 | 1.0926 | 0.4558 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 1.16.1
- Tokenizers 0.13.3
|