BAAI
/

File size: 16,564 Bytes
21aa4f9
 
 
 
76c437d
359960f
 
c3d8d52
21aa4f9
a99287e
e763119
21aa4f9
442084e
21aa4f9
 
 
 
 
 
 
e763119
21aa4f9
 
 
 
e763119
21aa4f9
ecc1ac1
21aa4f9
 
e763119
21aa4f9
 
e763119
21aa4f9
e763119
ecc1ac1
a99287e
 
936fbed
21aa4f9
 
 
e763119
936fbed
e763119
ecc1ac1
21aa4f9
e763119
ecc1ac1
 
21aa4f9
a99287e
e763119
936fbed
21aa4f9
936fbed
e763119
 
 
 
21aa4f9
b29c29f
21aa4f9
e763119
ecc1ac1
21aa4f9
ecc1ac1
21aa4f9
 
e763119
 
 
 
936fbed
e763119
 
21aa4f9
e763119
21aa4f9
 
 
 
 
 
 
936fbed
a99287e
e763119
21aa4f9
 
a99287e
 
 
 
 
 
 
21aa4f9
e763119
 
 
 
a99287e
e763119
 
 
21aa4f9
 
e763119
 
21aa4f9
 
 
 
 
 
 
a99287e
e763119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a99287e
21aa4f9
a99287e
 
 
 
 
 
21aa4f9
a99287e
21aa4f9
 
 
a99287e
 
e763119
21aa4f9
 
a99287e
 
 
 
 
936fbed
 
21aa4f9
a99287e
 
 
21aa4f9
 
ecc1ac1
21aa4f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e763119
ecc1ac1
21aa4f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecc1ac1
 
21aa4f9
 
 
 
 
 
e763119
21aa4f9
 
 
 
 
 
 
 
e763119
21aa4f9
 
 
 
 
 
442084e
21aa4f9
 
 
 
 
 
e763119
 
 
 
 
21aa4f9
ecc1ac1
21aa4f9
 
 
 
 
 
ecc1ac1
21aa4f9
 
 
fc440e8
 
ecc1ac1
e763119
 
21aa4f9
e763119
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
---
license: mit
language:
- zh
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- Transfomers
---


<h1 align="center">FlagEmbedding</h1>


<h4 align="center">
    <p>
        <a href=#model-list>Model List</a> | 
        <a href=#usage>Usage</a>  |
        <a href="#evaluation">Evaluation</a> |
        <a href="#train">Train</a> |
        <a href="#contact">Contact</a> |
        <a href="#license">License</a> 
    <p>
</h4>

More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).

[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)

FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification,  clustering, or semantic search.
And it also can be used in vector database for LLMs.

************* 🌟**Updates**🌟 *************
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [**this**](#using-langchain); C-MTEB **leaderboard** is [avaliable](https://huggingface.co/spaces/mteb/leaderboard).  
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!**  
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.   


## Model List

`bge` is short for `BAAI general embedding`.

|              Model              | Language | Description | query instruction for retrieval\* |
|:-------------------------------|:--------:| :--------:| :--------:|
|  [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) |   English |  rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: `  |
|  [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) |   English |  rank **2nd** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: `  |
|  [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) |   English | a small-scale model but with competitive performance  | `Represent this sentence for searching relevant passages: `  |
|  [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) |   Chinese | rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:`  |
|  [BAAI/bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) |   Chinese | This model is trained without instruction, and rank **2nd** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark |   |
|  [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) |   Chinese |  a base-scale model but has similar ability with `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:`  |
|  [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) |   Chinese | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:`  |

\*: If you need to search the **long** relevant passages to a **short** query (s2p retrieval task), you need to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** need to be added to passages.

## Usage 

Here are some examples to use `bge` models with 
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).

#### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.

```python
from FlagEmbedding import FlagModel
sentences = ["样例数据-1", "样例数据-2"]
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
embeddings_1 = model.encode(sentences)
embeddings_2 = model.encode(sentences)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)

# for s2p(short query to long passage) retrieval task, please use encode_queries() which will automatically add the instruction to each query
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
q_embeddings = model.encode_queries(queries)
p_embeddings = model.encode(passages)
scores = q_embeddings @ p_embeddings.T
```
The value of argument `query_instruction_for_retrieval` see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). 

FlagModel will use all available GPUs when encoding, please set `os.environ["CUDA_VISIBLE_DEVICES"]` to choose GPU.


#### Using Sentence-Transformers

Using this model also is easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```
```python
from sentence_transformers import SentenceTransformer
sentences = ["样例数据-1", "样例数据-2"]
model = SentenceTransformer('BAAI/bge-large-zh')
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
```
For s2p(short query to long passage) retrieval task, 
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). 
But the instruction is not needed for passages.
```python
from sentence_transformers import SentenceTransformer
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
instruction = "为这个句子生成表示以用于检索相关文章:"

model = SentenceTransformer('BAAI/bge-large-zh')
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)
scores = q_embeddings @ p_embeddings.T
```

#### Using Langchain 

You can use `bge` in langchain like this:
```python
from langchain.embeddings import HuggingFaceBgeEmbeddings
model_name = "BAAI/bge-small-en"
model_kwargs = {'device': 'cuda'}
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
model_norm = HuggingFaceBgeEmbeddings(
    model_name=model_name,
    model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs
)
```


#### Using HuggingFace Transformers

With transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of first token (i.e., [CLS]) as the sentence embedding.

```python
from transformers import AutoTokenizer, AutoModel
import torch
# Sentences we want sentence embeddings for
sentences = ["样例数据-1", "样例数据-2"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
model = AutoModel.from_pretrained('BAAI/bge-large-zh')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)
    # Perform pooling. In this case, cls pooling.
    sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:", sentence_embeddings)
```


## Evaluation  
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
More details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). 

- **MTEB**:   

| Model Name |  Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) |  STS (10) | Summarization (1) | Classification (12) |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [**bge-large-en**](https://huggingface.co/BAAI/bge-large-en) |  1024 | 512 | **63.98** |  **53.9** | **46.98** | 85.8 | **59.48** | 81.56 | 32.06 | **76.21** | 
| [**bge-base-en**](https://huggingface.co/BAAI/bge-base-en) |  768 | 512 |  63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | 
| [gte-large](https://huggingface.co/thenlper/gte-large) |  1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
| [gte-base](https://huggingface.co/thenlper/gte-base) 	|  768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) |  1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
| [**bge-small-en**](https://huggingface.co/BAAI/bge-small-en) |  384 | 512 | 62.11 |  51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |  
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) |  768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) |  768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
| [gte-small](https://huggingface.co/thenlper/gte-small) |  384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) |  768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) 	|  768 | 514 	| 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) 	|  4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
| [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) 	|  384 | 512 	| 56.53 | 42.69 | 41.81 | 82.41 | 58.44 | 79.8 | 27.9 | 63.21 |
| [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) 	|  384 | 512 	| 56.26 | 41.95 | 42.35 | 82.37 | 58.04 | 78.9 | 30.81 | 63.05 |
| [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) 	|  768 | 512 	| 56.00 | 41.88 | 41.1 	| 82.54 | 53.14 | 76.51 | 30.36 | 66.68 |
| [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) 	|  768 | 512 	| 55.27 | 33.63 | 40.21 | 85.18 | 53.09 | 81.14 | 31.39 | 69.81 |



- **C-MTEB**:  
We create a benchmark C-MTEB for chinese text embedding which consists of  31 datasets from 6 tasks. 
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
 
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
| [**bge-large-zh**](https://huggingface.co/BAAI/bge-large-zh) | 1024 | **64.20** | **71.53** | **53.23** | **78.94** | 72.26 | **65.11** | 48.39 |  
| [**bge-large-zh-noinstruct**](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 50.98 | 76.77 | **72.49** | 64.91 | **50.01** |   
| [**BAAI/bge-base-zh**](https://huggingface.co/BAAI/bge-base-zh) |  768 | 62.96 | 69.53 | 52.05 | 77.5 | 70.98 | 64.91 | 47.63 |  
| [**BAAI/bge-small-zh**](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 |  63.07 | 46.87 | 70.35 | 67.78 | 61.48 | 45.09 |  
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 |56.91 | 48.15 | 63.99 | 70.28 | 59.34 | 47.68 |  
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 |  57.05 |54.75 | 48.64 | 64.3 | 71.22 | 59.66 | 48.88 |  
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 |  53.02 | 52.0 | 40.61 | 69.56 | 67.38 | 54.28 | 45.68 |  
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 |  44.4 | 39.41 | 66.62 | 65.29 | 49.25 | 44.39 | 
| [text2vec](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 |  47.63 | 38.79 | 41.71 | 67.41 | 65.18 | 49.45 | 37.66 |  
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 41.98 | 70.86 | 63.42 | 49.16 | 30.02 |  



## Train
This section will introduce the way we used to train the general embedding. 
The training scripts are in [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md), 
and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/pretrain/README.md) and [fine-tune](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/finetune/README.md).


**1. RetroMAE Pre-train**  
We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE), 
which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)). 
The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720. 
In retromae, the mask ratio of encoder and decoder are 0.3, 0.5 respectively.
We used the AdamW optimizer and the learning rate is 2e-5.

**Pre-training data**:
- English: 
    - [Pile](https://pile.eleuther.ai/)
    - [wikipedia](https://huggingface.co/datasets/wikipedia)
    - [msmarco](https://huggingface.co/datasets/Tevatron/msmarco-passage-corpus)
- Chinese: 
    - [wudao](https://github.com/BAAI-WuDao/Data)


**2. Finetune**  
We fine-tune the model using a contrastive objective. 
The format of input data is a triple`(query, positive, negative)`. 
Besides the negative in the triple, we also adopt in-batch negatives strategy. 
We employ the cross-device negatives sharing method to share negatives among different GPUs, 
which can dramatically **increase the number of negatives**.

We trained our model on 48 A100(40G) GPUs with a large batch size of 32,768 (so there are **65,535** negatives for each query in a batch). 
We used the AdamW optimizer and the learning rate is 1e-5.
The temperature for contrastive loss is 0.01.

Besides, we add instruction to the query for s2p(short query to long passage) retrieval task in the training (add nothing to passages). 
For English, the instruction is `Represent this sentence for searching relevant passages: `;
For Chinese, the instruction is `为这个句子生成表示以用于检索相关文章:`.
In the evaluation, the instruction should be added for queries in retrieval task, not be added for other tasks.
Noted that the instruction is not needed for passages.

The finetune script is accessible in this repository: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md). 
You can easily finetune your model with it.

**Training data**:

- For English, we collect 230M text pairs from [wikipedia](https://huggingface.co/datasets/wikipedia), [cc-net](https://github.com/facebookresearch/cc_net), and so on.

- For chinese, we collect 120M text pairs from [wudao](https://github.com/BAAI-WuDao/Data), [simclue](https://github.com/CLUEbenchmark/SimCLUE) and so on.

**The data collection is to be released in the future.**

We will continually update the embedding models and training codes, 
hoping to promote the development of the embedding model community.



## License
FlagEmbedding is licensed under [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.