BAAI
/

Any-to-Any
Diffusers
Safetensors
OmniGen2Pipeline
File size: 81,136 Bytes
e102b09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
import warnings
import itertools
from typing import Any, Dict, List, Optional, Tuple, Union
import math

import torch
import torch.nn as nn
import torch.nn.functional as F

from einops import rearrange, repeat

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
from diffusers.models.attention_processor import Attention
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.embeddings import get_1d_rotary_pos_embed
from diffusers.models.activations import get_activation
from diffusers.models.embeddings import Timesteps

import importlib.util
import sys

# The package importlib_metadata is in a different place, depending on the python version.
if sys.version_info < (3, 8):
    import importlib_metadata
else:
    import importlib.metadata as importlib_metadata

def _is_package_available(pkg_name: str):
    pkg_exists = importlib.util.find_spec(pkg_name) is not None
    pkg_version = "N/A"

    if pkg_exists:
        try:
            pkg_version = importlib_metadata.version(pkg_name)
        except (ImportError, importlib_metadata.PackageNotFoundError):
            pkg_exists = False

    return pkg_exists, pkg_version

_triton_available, _triton_version = _is_package_available("triton")
_flash_attn_available, _flash_attn_version = _is_package_available("flash_attn")

def is_triton_available():
    return _triton_available

def is_flash_attn_available():
    return _flash_attn_available

if is_triton_available():
    # from ...ops.triton.layer_norm import RMSNorm
    import triton
    import triton.language as tl


    from typing import Callable


    def custom_amp_decorator(dec: Callable, cuda_amp_deprecated: bool):
        def decorator(*args, **kwargs):
            if cuda_amp_deprecated:
                kwargs["device_type"] = "cuda"
            return dec(*args, **kwargs)
        return decorator


    if hasattr(torch.amp, "custom_fwd"): # type: ignore[attr-defined]
        deprecated = True
        from torch.amp import custom_fwd, custom_bwd # type: ignore[attr-defined]
    else:
        deprecated = False
        from torch.cuda.amp import custom_fwd, custom_bwd

    custom_fwd = custom_amp_decorator(custom_fwd, deprecated)
    custom_bwd = custom_amp_decorator(custom_bwd, deprecated)


    def triton_autotune_configs():
        # Return configs with a valid warp count for the current device
        configs=[]
        # Maximum threads per block is architecture-dependent in theory, but in reality all are 1024
        max_threads_per_block=1024
        # Default to warp size 32 if not defined by device
        warp_size=getattr(torch.cuda.get_device_properties(torch.cuda.current_device()), "warp_size", 32)
        # Autotune for warp counts which are powers of 2 and do not exceed thread per block limit
        warp_count=1
        while warp_count*warp_size <= max_threads_per_block:
            configs.append(triton.Config({}, num_warps=warp_count))
            warp_count*=2
        return configs
    
    @triton.autotune(
        configs=triton_autotune_configs(),
        key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"],
    )
    # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
    # @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
    @triton.heuristics({"HAS_X1": lambda args: args["X1"] is not None})
    @triton.heuristics({"HAS_W1": lambda args: args["W1"] is not None})
    @triton.heuristics({"HAS_B1": lambda args: args["B1"] is not None})
    @triton.jit
    def _layer_norm_fwd_1pass_kernel(
        X,  # pointer to the input
        Y,  # pointer to the output
        W,  # pointer to the weights
        B,  # pointer to the biases
        RESIDUAL,  # pointer to the residual
        X1,
        W1,
        B1,
        Y1,
        RESIDUAL_OUT,  # pointer to the residual
        ROWSCALE,
        SEEDS,  # Dropout seeds for each row
        DROPOUT_MASK,
        Mean,  # pointer to the mean
        Rstd,  # pointer to the 1/std
        stride_x_row,  # how much to increase the pointer when moving by 1 row
        stride_y_row,
        stride_res_row,
        stride_res_out_row,
        stride_x1_row,
        stride_y1_row,
        M,  # number of rows in X
        N,  # number of columns in X
        eps,  # epsilon to avoid division by zero
        dropout_p,  # Dropout probability
        zero_centered_weight,  # If true, add 1.0 to the weight
        IS_RMS_NORM: tl.constexpr,
        BLOCK_N: tl.constexpr,
        HAS_RESIDUAL: tl.constexpr,
        STORE_RESIDUAL_OUT: tl.constexpr,
        HAS_BIAS: tl.constexpr,
        HAS_DROPOUT: tl.constexpr,
        STORE_DROPOUT_MASK: tl.constexpr,
        HAS_ROWSCALE: tl.constexpr,
        HAS_X1: tl.constexpr,
        HAS_W1: tl.constexpr,
        HAS_B1: tl.constexpr,
    ):
        # Map the program id to the row of X and Y it should compute.
        row = tl.program_id(0)
        X += row * stride_x_row
        Y += row * stride_y_row
        if HAS_RESIDUAL:
            RESIDUAL += row * stride_res_row
        if STORE_RESIDUAL_OUT:
            RESIDUAL_OUT += row * stride_res_out_row
        if HAS_X1:
            X1 += row * stride_x1_row
        if HAS_W1:
            Y1 += row * stride_y1_row
        # Compute mean and variance
        cols = tl.arange(0, BLOCK_N)
        x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
        if HAS_ROWSCALE:
            rowscale = tl.load(ROWSCALE + row).to(tl.float32)
            x *= rowscale
        if HAS_DROPOUT:
            # Compute dropout mask
            # 7 rounds is good enough, and reduces register pressure
            keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
            x = tl.where(keep_mask, x / (1.0 - dropout_p), 0.0)
            if STORE_DROPOUT_MASK:
                tl.store(DROPOUT_MASK + row * N + cols, keep_mask, mask=cols < N)
        if HAS_X1:
            x1 = tl.load(X1 + cols, mask=cols < N, other=0.0).to(tl.float32)
            if HAS_ROWSCALE:
                rowscale = tl.load(ROWSCALE + M + row).to(tl.float32)
                x1 *= rowscale
            if HAS_DROPOUT:
                # Compute dropout mask
                # 7 rounds is good enough, and reduces register pressure
                keep_mask = (
                    tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
                )
                x1 = tl.where(keep_mask, x1 / (1.0 - dropout_p), 0.0)
                if STORE_DROPOUT_MASK:
                    tl.store(DROPOUT_MASK + (M + row) * N + cols, keep_mask, mask=cols < N)
            x += x1
        if HAS_RESIDUAL:
            residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
            x += residual
        if STORE_RESIDUAL_OUT:
            tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
        if not IS_RMS_NORM:
            mean = tl.sum(x, axis=0) / N
            tl.store(Mean + row, mean)
            xbar = tl.where(cols < N, x - mean, 0.0)
            var = tl.sum(xbar * xbar, axis=0) / N
        else:
            xbar = tl.where(cols < N, x, 0.0)
            var = tl.sum(xbar * xbar, axis=0) / N
        rstd = 1 / tl.sqrt(var + eps)
        tl.store(Rstd + row, rstd)
        # Normalize and apply linear transformation
        mask = cols < N
        w = tl.load(W + cols, mask=mask).to(tl.float32)
        if zero_centered_weight:
            w += 1.0
        if HAS_BIAS:
            b = tl.load(B + cols, mask=mask).to(tl.float32)
        x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
        y = x_hat * w + b if HAS_BIAS else x_hat * w
        # Write output
        tl.store(Y + cols, y, mask=mask)
        if HAS_W1:
            w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
            if zero_centered_weight:
                w1 += 1.0
            if HAS_B1:
                b1 = tl.load(B1 + cols, mask=mask).to(tl.float32)
            y1 = x_hat * w1 + b1 if HAS_B1 else x_hat * w1
            tl.store(Y1 + cols, y1, mask=mask)


    def _layer_norm_fwd(
        x,
        weight,
        bias,
        eps,
        residual=None,
        x1=None,
        weight1=None,
        bias1=None,
        dropout_p=0.0,
        rowscale=None,
        out_dtype=None,
        residual_dtype=None,
        zero_centered_weight=False,
        is_rms_norm=False,
        return_dropout_mask=False,
        out=None,
        residual_out=None
    ):
        if residual is not None:
            residual_dtype = residual.dtype
        M, N = x.shape
        assert x.stride(-1) == 1
        if residual is not None:
            assert residual.stride(-1) == 1
            assert residual.shape == (M, N)
        assert weight.shape == (N,)
        assert weight.stride(-1) == 1
        if bias is not None:
            assert bias.stride(-1) == 1
            assert bias.shape == (N,)
        if x1 is not None:
            assert x1.shape == x.shape
            assert rowscale is None
            assert x1.stride(-1) == 1
        if weight1 is not None:
            assert weight1.shape == (N,)
            assert weight1.stride(-1) == 1
        if bias1 is not None:
            assert bias1.shape == (N,)
            assert bias1.stride(-1) == 1
        if rowscale is not None:
            assert rowscale.is_contiguous()
            assert rowscale.shape == (M,)
        # allocate output
        if out is None:
            out = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
        else:
            assert out.shape == x.shape
        assert out.stride(-1) == 1
        if weight1 is not None:
            y1 = torch.empty_like(out)
            assert y1.stride(-1) == 1
        else:
            y1 = None
        if (
            residual is not None
            or (residual_dtype is not None and residual_dtype != x.dtype)
            or dropout_p > 0.0
            or rowscale is not None
            or x1 is not None
        ):
            if residual_out is None:
                residual_out = torch.empty(
                    M, N, device=x.device, dtype=residual_dtype if residual_dtype is not None else x.dtype
                )
            else:
                assert residual_out.shape == x.shape
            assert residual_out.stride(-1) == 1
        else:
            residual_out = None
        mean = torch.empty((M,), dtype=torch.float32, device=x.device) if not is_rms_norm else None
        rstd = torch.empty((M,), dtype=torch.float32, device=x.device)
        if dropout_p > 0.0:
            seeds = torch.randint(
                2**32, (M if x1 is None else 2 * M,), device=x.device, dtype=torch.int64
            )
        else:
            seeds = None
        if return_dropout_mask and dropout_p > 0.0:
            dropout_mask = torch.empty(M if x1 is None else 2 * M, N, device=x.device, dtype=torch.bool)
        else:
            dropout_mask = None
        # Less than 64KB per feature: enqueue fused kernel
        MAX_FUSED_SIZE = 65536 // x.element_size()
        BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
        if N > BLOCK_N:
            raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
        with torch.cuda.device(x.device.index):
            _layer_norm_fwd_1pass_kernel[(M,)](
                x,
                out,
                weight,
                bias,
                residual,
                x1,
                weight1,
                bias1,
                y1,
                residual_out,
                rowscale,
                seeds,
                dropout_mask,
                mean,
                rstd,
                x.stride(0),
                out.stride(0),
                residual.stride(0) if residual is not None else 0,
                residual_out.stride(0) if residual_out is not None else 0,
                x1.stride(0) if x1 is not None else 0,
                y1.stride(0) if y1 is not None else 0,
                M,
                N,
                eps,
                dropout_p,
                zero_centered_weight,
                is_rms_norm,
                BLOCK_N,
                residual is not None,
                residual_out is not None,
                bias is not None,
                dropout_p > 0.0,
                dropout_mask is not None,
                rowscale is not None,
            )
        # residual_out is None if residual is None and residual_dtype == input_dtype and dropout_p == 0.0
        if dropout_mask is not None and x1 is not None:
            dropout_mask, dropout_mask1 = dropout_mask.tensor_split(2, dim=0)
        else:
            dropout_mask1 = None
        return (
            out,
            y1,
            mean,
            rstd,
            residual_out if residual_out is not None else x,
            seeds,
            dropout_mask,
            dropout_mask1,
        )

    @triton.autotune(
        configs=triton_autotune_configs(),
        key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS", "HAS_DROPOUT"],
    )
    # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
    # @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
    # @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
    @triton.heuristics({"HAS_ROWSCALE": lambda args: args["ROWSCALE"] is not None})
    @triton.heuristics({"HAS_DY1": lambda args: args["DY1"] is not None})
    @triton.heuristics({"HAS_DX1": lambda args: args["DX1"] is not None})
    @triton.heuristics({"HAS_B1": lambda args: args["DB1"] is not None})
    @triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
    @triton.jit
    def _layer_norm_bwd_kernel(
        X,  # pointer to the input
        W,  # pointer to the weights
        B,  # pointer to the biases
        Y,  # pointer to the output to be recomputed
        DY,  # pointer to the output gradient
        DX,  # pointer to the input gradient
        DW,  # pointer to the partial sum of weights gradient
        DB,  # pointer to the partial sum of biases gradient
        DRESIDUAL,
        W1,
        DY1,
        DX1,
        DW1,
        DB1,
        DRESIDUAL_IN,
        ROWSCALE,
        SEEDS,
        Mean,  # pointer to the mean
        Rstd,  # pointer to the 1/std
        stride_x_row,  # how much to increase the pointer when moving by 1 row
        stride_y_row,
        stride_dy_row,
        stride_dx_row,
        stride_dres_row,
        stride_dy1_row,
        stride_dx1_row,
        stride_dres_in_row,
        M,  # number of rows in X
        N,  # number of columns in X
        eps,  # epsilon to avoid division by zero
        dropout_p,
        zero_centered_weight,
        rows_per_program,
        IS_RMS_NORM: tl.constexpr,
        BLOCK_N: tl.constexpr,
        HAS_DRESIDUAL: tl.constexpr,
        STORE_DRESIDUAL: tl.constexpr,
        HAS_BIAS: tl.constexpr,
        HAS_DROPOUT: tl.constexpr,
        HAS_ROWSCALE: tl.constexpr,
        HAS_DY1: tl.constexpr,
        HAS_DX1: tl.constexpr,
        HAS_B1: tl.constexpr,
        RECOMPUTE_OUTPUT: tl.constexpr,
    ):
        # Map the program id to the elements of X, DX, and DY it should compute.
        row_block_id = tl.program_id(0)
        row_start = row_block_id * rows_per_program
        # Do not early exit if row_start >= M, because we need to write DW and DB
        cols = tl.arange(0, BLOCK_N)
        mask = cols < N
        X += row_start * stride_x_row
        if HAS_DRESIDUAL:
            DRESIDUAL += row_start * stride_dres_row
        if STORE_DRESIDUAL:
            DRESIDUAL_IN += row_start * stride_dres_in_row
        DY += row_start * stride_dy_row
        DX += row_start * stride_dx_row
        if HAS_DY1:
            DY1 += row_start * stride_dy1_row
        if HAS_DX1:
            DX1 += row_start * stride_dx1_row
        if RECOMPUTE_OUTPUT:
            Y += row_start * stride_y_row
        w = tl.load(W + cols, mask=mask).to(tl.float32)
        if zero_centered_weight:
            w += 1.0
        if RECOMPUTE_OUTPUT and HAS_BIAS:
            b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
        if HAS_DY1:
            w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
            if zero_centered_weight:
                w1 += 1.0
        dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
        if HAS_BIAS:
            db = tl.zeros((BLOCK_N,), dtype=tl.float32)
        if HAS_DY1:
            dw1 = tl.zeros((BLOCK_N,), dtype=tl.float32)
            if HAS_B1:
                db1 = tl.zeros((BLOCK_N,), dtype=tl.float32)
        row_end = min((row_block_id + 1) * rows_per_program, M)
        for row in range(row_start, row_end):
            # Load data to SRAM
            x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
            dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
            if HAS_DY1:
                dy1 = tl.load(DY1 + cols, mask=mask, other=0).to(tl.float32)
            if not IS_RMS_NORM:
                mean = tl.load(Mean + row)
            rstd = tl.load(Rstd + row)
            # Compute dx
            xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
            xhat = tl.where(mask, xhat, 0.0)
            if RECOMPUTE_OUTPUT:
                y = xhat * w + b if HAS_BIAS else xhat * w
                tl.store(Y + cols, y, mask=mask)
            wdy = w * dy
            dw += dy * xhat
            if HAS_BIAS:
                db += dy
            if HAS_DY1:
                wdy += w1 * dy1
                dw1 += dy1 * xhat
                if HAS_B1:
                    db1 += dy1
            if not IS_RMS_NORM:
                c1 = tl.sum(xhat * wdy, axis=0) / N
                c2 = tl.sum(wdy, axis=0) / N
                dx = (wdy - (xhat * c1 + c2)) * rstd
            else:
                c1 = tl.sum(xhat * wdy, axis=0) / N
                dx = (wdy - xhat * c1) * rstd
            if HAS_DRESIDUAL:
                dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32)
                dx += dres
            # Write dx
            if STORE_DRESIDUAL:
                tl.store(DRESIDUAL_IN + cols, dx, mask=mask)
            if HAS_DX1:
                if HAS_DROPOUT:
                    keep_mask = (
                        tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
                    )
                    dx1 = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
                else:
                    dx1 = dx
                tl.store(DX1 + cols, dx1, mask=mask)
            if HAS_DROPOUT:
                keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
                dx = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
            if HAS_ROWSCALE:
                rowscale = tl.load(ROWSCALE + row).to(tl.float32)
                dx *= rowscale
            tl.store(DX + cols, dx, mask=mask)

            X += stride_x_row
            if HAS_DRESIDUAL:
                DRESIDUAL += stride_dres_row
            if STORE_DRESIDUAL:
                DRESIDUAL_IN += stride_dres_in_row
            if RECOMPUTE_OUTPUT:
                Y += stride_y_row
            DY += stride_dy_row
            DX += stride_dx_row
            if HAS_DY1:
                DY1 += stride_dy1_row
            if HAS_DX1:
                DX1 += stride_dx1_row
        tl.store(DW + row_block_id * N + cols, dw, mask=mask)
        if HAS_BIAS:
            tl.store(DB + row_block_id * N + cols, db, mask=mask)
        if HAS_DY1:
            tl.store(DW1 + row_block_id * N + cols, dw1, mask=mask)
            if HAS_B1:
                tl.store(DB1 + row_block_id * N + cols, db1, mask=mask)


    def _layer_norm_bwd(
        dy,
        x,
        weight,
        bias,
        eps,
        mean,
        rstd,
        dresidual=None,
        dy1=None,
        weight1=None,
        bias1=None,
        seeds=None,
        dropout_p=0.0,
        rowscale=None,
        has_residual=False,
        has_x1=False,
        zero_centered_weight=False,
        is_rms_norm=False,
        x_dtype=None,
        recompute_output=False,
    ):
        M, N = x.shape
        assert x.stride(-1) == 1
        assert dy.stride(-1) == 1
        assert dy.shape == (M, N)
        if dresidual is not None:
            assert dresidual.stride(-1) == 1
            assert dresidual.shape == (M, N)
        assert weight.shape == (N,)
        assert weight.stride(-1) == 1
        if bias is not None:
            assert bias.stride(-1) == 1
            assert bias.shape == (N,)
        if dy1 is not None:
            assert weight1 is not None
            assert dy1.shape == dy.shape
            assert dy1.stride(-1) == 1
        if weight1 is not None:
            assert weight1.shape == (N,)
            assert weight1.stride(-1) == 1
        if bias1 is not None:
            assert bias1.shape == (N,)
            assert bias1.stride(-1) == 1
        if seeds is not None:
            assert seeds.is_contiguous()
            assert seeds.shape == (M if not has_x1 else M * 2,)
        if rowscale is not None:
            assert rowscale.is_contiguous()
            assert rowscale.shape == (M,)
        # allocate output
        dx = (
            torch.empty_like(x)
            if x_dtype is None
            else torch.empty(M, N, dtype=x_dtype, device=x.device)
        )
        dresidual_in = (
            torch.empty_like(x)
            if has_residual
            and (dx.dtype != x.dtype or dropout_p > 0.0 or rowscale is not None or has_x1)
            else None
        )
        dx1 = torch.empty_like(dx) if (has_x1 and dropout_p > 0.0) else None
        y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
        if recompute_output:
            assert weight1 is None, "recompute_output is not supported with parallel LayerNorm"

        # Less than 64KB per feature: enqueue fused kernel
        MAX_FUSED_SIZE = 65536 // x.element_size()
        BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
        if N > BLOCK_N:
            raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
        # Increasing the multiple (e.g. 8) will allow more thread blocks to be launched and hide the
        # latency of the gmem reads/writes, but will increase the time of summing up dw / db.
        sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count * 8
        _dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
        _db = (
            torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
            if bias is not None
            else None
        )
        _dw1 = torch.empty_like(_dw) if weight1 is not None else None
        _db1 = torch.empty_like(_db) if bias1 is not None else None
        rows_per_program = math.ceil(M / sm_count)
        grid = (sm_count,)
        with torch.cuda.device(x.device.index):
            _layer_norm_bwd_kernel[grid](
                x,
                weight,
                bias,
                y,
                dy,
                dx,
                _dw,
                _db,
                dresidual,
                weight1,
                dy1,
                dx1,
                _dw1,
                _db1,
                dresidual_in,
                rowscale,
                seeds,
                mean,
                rstd,
                x.stride(0),
                0 if not recompute_output else y.stride(0),
                dy.stride(0),
                dx.stride(0),
                dresidual.stride(0) if dresidual is not None else 0,
                dy1.stride(0) if dy1 is not None else 0,
                dx1.stride(0) if dx1 is not None else 0,
                dresidual_in.stride(0) if dresidual_in is not None else 0,
                M,
                N,
                eps,
                dropout_p,
                zero_centered_weight,
                rows_per_program,
                is_rms_norm,
                BLOCK_N,
                dresidual is not None,
                dresidual_in is not None,
                bias is not None,
                dropout_p > 0.0,
            )
        dw = _dw.sum(0).to(weight.dtype)
        db = _db.sum(0).to(bias.dtype) if bias is not None else None
        dw1 = _dw1.sum(0).to(weight1.dtype) if weight1 is not None else None
        db1 = _db1.sum(0).to(bias1.dtype) if bias1 is not None else None
        # Don't need to compute dresidual_in separately in this case
        if has_residual and dx.dtype == x.dtype and dropout_p == 0.0 and rowscale is None:
            dresidual_in = dx
        if has_x1 and dropout_p == 0.0:
            dx1 = dx
        return (
            (dx, dw, db, dresidual_in, dx1, dw1, db1)
            if not recompute_output
            else (dx, dw, db, dresidual_in, dx1, dw1, db1, y)
        )

    class LayerNormFn(torch.autograd.Function):
        @staticmethod
        def forward(
            ctx,
            x,
            weight,
            bias,
            residual=None,
            x1=None,
            weight1=None,
            bias1=None,
            eps=1e-6,
            dropout_p=0.0,
            rowscale=None,
            prenorm=False,
            residual_in_fp32=False,
            zero_centered_weight=False,
            is_rms_norm=False,
            return_dropout_mask=False,
            out=None,
            residual_out=None
        ):
            x_shape_og = x.shape
            # Check for zero sequence length
            if x.numel() == 0:
                ctx.zero_seq_length = True
                # Only save minimal required tensors for backward
                # ctx.save_for_backward(weight, bias, weight1, bias1)
                ctx.x_shape_og = x_shape_og
                ctx.weight_shape = weight.shape
                ctx.weight_dtype = weight.dtype
                ctx.weight_device = weight.device

                ctx.has_bias = bias is not None
                ctx.bias_shape = bias.shape if bias is not None else None
                ctx.bias_dtype = bias.dtype if bias is not None else None
                ctx.bias_device = bias.device if bias is not None else None

                ctx.has_weight1 = weight1 is not None
                ctx.weight1_shape = weight1.shape if weight1 is not None else None
                ctx.weight1_dtype = weight1.dtype if weight1 is not None else None
                ctx.weight1_device = weight1.device if weight1 is not None else None

                ctx.has_bias1 = bias1 is not None
                ctx.bias1_shape = bias1.shape if bias1 is not None else None
                ctx.bias1_dtype = bias1.dtype if bias1 is not None else None
                ctx.bias1_device = bias1.device if bias1 is not None else None

                ctx.has_residual = residual is not None
                ctx.has_x1 = x1 is not None
                ctx.dropout_p = dropout_p

                # Handle output tensors with correct dtype
                y = x  # Preserve input tensor properties
                y1 = torch.empty_like(x) if x1 is not None else None
                
                # Only create residual_out if prenorm is True
                residual_out = torch.empty(x.shape, 
                                        dtype=torch.float32 if residual_in_fp32 else x.dtype,
                                        device=x.device) if prenorm else None
                
                # Handle dropout masks
                dropout_mask = None
                dropout_mask1 = None
                if return_dropout_mask:
                    dropout_mask = torch.empty_like(x, dtype=torch.uint8)
                    if x1 is not None:
                        dropout_mask1 = torch.empty_like(x, dtype=torch.uint8)

                # Return based on configuration
                if not return_dropout_mask:
                    if weight1 is None:
                        return y if not prenorm else (y, residual_out)
                    else:
                        return (y, y1) if not prenorm else (y, y1, residual_out)
                else:
                    if weight1 is None:
                        return ((y, dropout_mask, dropout_mask1) if not prenorm 
                            else (y, residual_out, dropout_mask, dropout_mask1))
                    else:
                        return ((y, y1, dropout_mask, dropout_mask1) if not prenorm 
                            else (y, y1, residual_out, dropout_mask, dropout_mask1))

            ctx.zero_seq_length = False  
            # reshape input data into 2D tensor
            x = x.reshape(-1, x.shape[-1])
            if x.stride(-1) != 1:
                x = x.contiguous()
            if residual is not None:
                assert residual.shape == x_shape_og
                residual = residual.reshape(-1, residual.shape[-1])
                if residual.stride(-1) != 1:
                    residual = residual.contiguous()
            if x1 is not None:
                assert x1.shape == x_shape_og
                assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
                x1 = x1.reshape(-1, x1.shape[-1])
                if x1.stride(-1) != 1:
                    x1 = x1.contiguous()
            weight = weight.contiguous()
            if bias is not None:
                bias = bias.contiguous()
            if weight1 is not None:
                weight1 = weight1.contiguous()
            if bias1 is not None:
                bias1 = bias1.contiguous()
            if rowscale is not None:
                rowscale = rowscale.reshape(-1).contiguous()
            residual_dtype = (
                residual.dtype
                if residual is not None
                else (torch.float32 if residual_in_fp32 else None)
            )
            if out is not None:
                out = out.reshape(-1, out.shape[-1])
            if residual_out is not None:
                residual_out = residual_out.reshape(-1, residual_out.shape[-1])
            y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd(
                x,
                weight,
                bias,
                eps,
                residual,
                x1,
                weight1,
                bias1,
                dropout_p=dropout_p,
                rowscale=rowscale,
                residual_dtype=residual_dtype,
                zero_centered_weight=zero_centered_weight,
                is_rms_norm=is_rms_norm,
                return_dropout_mask=return_dropout_mask,
                out=out,
                residual_out=residual_out
            )
            ctx.save_for_backward(
                residual_out, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd
            )
            ctx.x_shape_og = x_shape_og
            ctx.eps = eps
            ctx.dropout_p = dropout_p
            ctx.is_rms_norm = is_rms_norm
            ctx.has_residual = residual is not None
            ctx.has_x1 = x1 is not None
            ctx.prenorm = prenorm
            ctx.x_dtype = x.dtype
            ctx.zero_centered_weight = zero_centered_weight
            y = y.reshape(x_shape_og)
            y1 = y1.reshape(x_shape_og) if y1 is not None else None
            residual_out = residual_out.reshape(x_shape_og) if residual_out is not None else None
            dropout_mask = dropout_mask.reshape(x_shape_og) if dropout_mask is not None else None
            dropout_mask1 = dropout_mask1.reshape(x_shape_og) if dropout_mask1 is not None else None
            if not return_dropout_mask:
                if weight1 is None:
                    return y if not prenorm else (y, residual_out)
                else:
                    return (y, y1) if not prenorm else (y, y1, residual_out)
            else:
                if weight1 is None:
                    return (
                        (y, dropout_mask, dropout_mask1)
                        if not prenorm
                        else (y, residual_out, dropout_mask, dropout_mask1)
                    )
                else:
                    return (
                        (y, y1, dropout_mask, dropout_mask1)
                        if not prenorm
                        else (y, y1, residual_out, dropout_mask, dropout_mask1)
                    )

        @staticmethod
        def backward(ctx, dy, *args):
            if ctx.zero_seq_length:
                return (
                    torch.zeros(ctx.x_shape_og, dtype=dy.dtype, device=dy.device),
                    torch.zeros(ctx.weight_shape, dtype=ctx.weight_dtype, device=ctx.weight_device),
                    torch.zeros(ctx.bias_shape, dtype=ctx.bias_dtype, device=ctx.bias_device) if ctx.has_bias else None,
                    torch.zeros(ctx.x_shape_og, dtype=dy.dtype, device=dy.device) if ctx.has_residual else None,
                    torch.zeros(ctx.x_shape_og, dtype=dy.dtype, device=dy.device) if ctx.has_x1 and ctx.dropout_p > 0.0 else None,
                    torch.zeros(ctx.weight1_shape, dtype=ctx.weight1_dtype, device=ctx.weight1_device) if ctx.has_weight1 else None,
                    torch.zeros(ctx.bias1_shape, dtype=ctx.bias1_dtype, device=ctx.bias1_device) if ctx.has_bias1 else None,
                    None,
                    None,
                    None,
                    None,
                    None,
                    None,
                    None,
                    None,
                    None,
                    None,
                )
            
            x, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd = ctx.saved_tensors
            dy = dy.reshape(-1, dy.shape[-1])
            if dy.stride(-1) != 1:
                dy = dy.contiguous()
            assert dy.shape == x.shape
            if weight1 is not None:
                dy1, args = args[0], args[1:]
                dy1 = dy1.reshape(-1, dy1.shape[-1])
                if dy1.stride(-1) != 1:
                    dy1 = dy1.contiguous()
                assert dy1.shape == x.shape
            else:
                dy1 = None
            if ctx.prenorm:
                dresidual = args[0]
                dresidual = dresidual.reshape(-1, dresidual.shape[-1])
                if dresidual.stride(-1) != 1:
                    dresidual = dresidual.contiguous()
                assert dresidual.shape == x.shape
            else:
                dresidual = None
            
            dx, dw, db, dresidual_in, dx1, dw1, db1 = _layer_norm_bwd(
                dy,
                x,
                weight,
                bias,
                ctx.eps,
                mean,
                rstd,
                dresidual,
                dy1,
                weight1,
                bias1,
                seeds,
                ctx.dropout_p,
                rowscale,
                ctx.has_residual,
                ctx.has_x1,
                ctx.zero_centered_weight,
                ctx.is_rms_norm,
                x_dtype=ctx.x_dtype,
            )
            return (
                dx.reshape(ctx.x_shape_og),
                dw,
                db,
                dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
                dx1.reshape(ctx.x_shape_og) if dx1 is not None else None,
                dw1,
                db1,
                None,
                None,
                None,
                None,
                None,
                None,
                None,
                None,
                None,
                None,
            )
        
    def rms_norm_fn(
        x,
        weight,
        bias,
        residual=None,
        x1=None,
        weight1=None,
        bias1=None,
        eps=1e-6,
        dropout_p=0.0,
        rowscale=None,
        prenorm=False,
        residual_in_fp32=False,
        zero_centered_weight=False,
        return_dropout_mask=False,
        out=None,
        residual_out=None
    ):
        return LayerNormFn.apply(
            x,
            weight,
            bias,
            residual,
            x1,
            weight1,
            bias1,
            eps,
            dropout_p,
            rowscale,
            prenorm,
            residual_in_fp32,
            zero_centered_weight,
            True,
            return_dropout_mask,
            out,
            residual_out
        )

    class RMSNorm(torch.nn.Module):
        def __init__(self, hidden_size, eps=1e-5, dropout_p=0.0, zero_centered_weight=False,
                    device=None, dtype=None):
            factory_kwargs = {"device": device, "dtype": dtype}
            super().__init__()
            self.eps = eps
            if dropout_p > 0.0:
                self.drop = torch.nn.Dropout(dropout_p)
            else:
                self.drop = None
            self.zero_centered_weight = zero_centered_weight
            self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
            self.register_parameter("bias", None)
            self.reset_parameters()

        def reset_parameters(self):
            if not self.zero_centered_weight:
                torch.nn.init.ones_(self.weight)
            else:
                torch.nn.init.zeros_(self.weight)

        def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
            return rms_norm_fn(
                x,
                self.weight,
                self.bias,
                residual=residual,
                eps=self.eps,
                dropout_p=self.drop.p if self.drop is not None and self.training else 0.0,
                prenorm=prenorm,
                residual_in_fp32=residual_in_fp32,
                zero_centered_weight=self.zero_centered_weight,
            )
else:
    from torch.nn import RMSNorm
    warnings.warn("Cannot import triton, install triton to use fused RMSNorm for better performance")
    
def swiglu(x, y):
    return F.silu(x.float(), inplace=False).to(x.dtype) * y

logger = logging.get_logger(__name__)


class TimestepEmbedding(nn.Module):
    def __init__(
        self,
        in_channels: int,
        time_embed_dim: int,
        act_fn: str = "silu",
        out_dim: int = None,
        post_act_fn: Optional[str] = None,
        cond_proj_dim=None,
        sample_proj_bias=True,
    ):
        super().__init__()

        self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias)

        if cond_proj_dim is not None:
            self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
        else:
            self.cond_proj = None

        self.act = get_activation(act_fn)

        if out_dim is not None:
            time_embed_dim_out = out_dim
        else:
            time_embed_dim_out = time_embed_dim
        self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias)

        if post_act_fn is None:
            self.post_act = None
        else:
            self.post_act = get_activation(post_act_fn)

        self.initialize_weights()
        
    def initialize_weights(self):
        nn.init.normal_(self.linear_1.weight, std=0.02)
        nn.init.zeros_(self.linear_1.bias)
        nn.init.normal_(self.linear_2.weight, std=0.02)
        nn.init.zeros_(self.linear_2.bias)
        
    def forward(self, sample, condition=None):
        if condition is not None:
            sample = sample + self.cond_proj(condition)
        sample = self.linear_1(sample)

        if self.act is not None:
            sample = self.act(sample)

        sample = self.linear_2(sample)

        if self.post_act is not None:
            sample = self.post_act(sample)
        return sample
    
def apply_rotary_emb(
    x: torch.Tensor,
    freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
    use_real: bool = True,
    use_real_unbind_dim: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
    to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
    reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
    tensors contain rotary embeddings and are returned as real tensors.

    Args:
        x (`torch.Tensor`):
            Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
        freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
    """
    if use_real:
        cos, sin = freqs_cis  # [S, D]
        cos = cos[None, None]
        sin = sin[None, None]
        cos, sin = cos.to(x.device), sin.to(x.device)

        if use_real_unbind_dim == -1:
            # Used for flux, cogvideox, hunyuan-dit
            x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)  # [B, S, H, D//2]
            x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
        elif use_real_unbind_dim == -2:
            # Used for Stable Audio, OmniGen and CogView4
            x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2)  # [B, S, H, D//2]
            x_rotated = torch.cat([-x_imag, x_real], dim=-1)
        else:
            raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")

        out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)

        return out
    else:
        # used for lumina
        # x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
        x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], x.shape[-1] // 2, 2))
        freqs_cis = freqs_cis.unsqueeze(2)
        x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)

        return x_out.type_as(x)
    
class OmniGen2RotaryPosEmbed(nn.Module):
    def __init__(self, theta: int,
                 axes_dim: Tuple[int, int, int],
                 axes_lens: Tuple[int, int, int] = (300, 512, 512),
                 patch_size: int = 2):
        super().__init__()
        self.theta = theta
        self.axes_dim = axes_dim
        self.axes_lens = axes_lens
        self.patch_size = patch_size

    @staticmethod
    def get_freqs_cis(axes_dim: Tuple[int, int, int],
                      axes_lens: Tuple[int, int, int],
                      theta: int) -> List[torch.Tensor]:
        freqs_cis = []
        freqs_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64
        for i, (d, e) in enumerate(zip(axes_dim, axes_lens)):
            emb = get_1d_rotary_pos_embed(d, e, theta=theta, freqs_dtype=freqs_dtype)
            freqs_cis.append(emb)
        return freqs_cis

    def _get_freqs_cis(self, freqs_cis, ids: torch.Tensor) -> torch.Tensor:
        device = ids.device
        if ids.device.type == "mps":
            ids = ids.to("cpu")

        result = []
        for i in range(len(self.axes_dim)):
            freqs = freqs_cis[i].to(ids.device)
            index = ids[:, :, i : i + 1].repeat(1, 1, freqs.shape[-1]).to(torch.int64)
            result.append(torch.gather(freqs.unsqueeze(0).repeat(index.shape[0], 1, 1), dim=1, index=index))
        return torch.cat(result, dim=-1).to(device)

    def forward(
        self,
        freqs_cis,
        attention_mask,
        l_effective_ref_img_len,
        l_effective_img_len,
        ref_img_sizes,
        img_sizes,
        device
    ):
        batch_size = len(attention_mask)
        p = self.patch_size

        encoder_seq_len = attention_mask.shape[1]
        l_effective_cap_len = attention_mask.sum(dim=1).tolist()

        seq_lengths = [cap_len + sum(ref_img_len) + img_len for cap_len, ref_img_len, img_len in zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len)]

        max_seq_len = max(seq_lengths)
        max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len])
        max_img_len = max(l_effective_img_len)

        # Create position IDs
        position_ids = torch.zeros(batch_size, max_seq_len, 3, dtype=torch.int32, device=device)

        for i, (cap_seq_len, seq_len) in enumerate(zip(l_effective_cap_len, seq_lengths)):
            # add text position ids
            position_ids[i, :cap_seq_len] = repeat(torch.arange(cap_seq_len, dtype=torch.int32, device=device), "l -> l 3")

            pe_shift = cap_seq_len
            pe_shift_len = cap_seq_len

            if ref_img_sizes[i] is not None:
                for ref_img_size, ref_img_len in zip(ref_img_sizes[i], l_effective_ref_img_len[i]):
                    H, W = ref_img_size
                    ref_H_tokens, ref_W_tokens = H // p, W // p
                    assert ref_H_tokens * ref_W_tokens == ref_img_len
                    # add image position ids

                    row_ids = repeat(torch.arange(ref_H_tokens, dtype=torch.int32, device=device), "h -> h w", w=ref_W_tokens).flatten()
                    col_ids = repeat(torch.arange(ref_W_tokens, dtype=torch.int32, device=device), "w -> h w", h=ref_H_tokens).flatten()
                    position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 0] = pe_shift
                    position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 1] = row_ids
                    position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 2] = col_ids

                    pe_shift += max(ref_H_tokens, ref_W_tokens)
                    pe_shift_len += ref_img_len

            H, W = img_sizes[i]
            H_tokens, W_tokens = H // p, W // p
            assert H_tokens * W_tokens == l_effective_img_len[i]

            row_ids = repeat(torch.arange(H_tokens, dtype=torch.int32, device=device), "h -> h w", w=W_tokens).flatten()
            col_ids = repeat(torch.arange(W_tokens, dtype=torch.int32, device=device), "w -> h w", h=H_tokens).flatten()

            assert pe_shift_len + l_effective_img_len[i] == seq_len
            position_ids[i, pe_shift_len: seq_len, 0] = pe_shift
            position_ids[i, pe_shift_len: seq_len, 1] = row_ids
            position_ids[i, pe_shift_len: seq_len, 2] = col_ids

        # Get combined rotary embeddings
        freqs_cis = self._get_freqs_cis(freqs_cis, position_ids)
        
        # create separate rotary embeddings for captions and images
        cap_freqs_cis = torch.zeros(
            batch_size, encoder_seq_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype
        )
        ref_img_freqs_cis = torch.zeros(
            batch_size, max_ref_img_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype
        )
        img_freqs_cis = torch.zeros(
            batch_size, max_img_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype
        )

        for i, (cap_seq_len, ref_img_len, img_len, seq_len) in enumerate(zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len, seq_lengths)):
            cap_freqs_cis[i, :cap_seq_len] = freqs_cis[i, :cap_seq_len]
            ref_img_freqs_cis[i, :sum(ref_img_len)] = freqs_cis[i, cap_seq_len:cap_seq_len + sum(ref_img_len)]
            img_freqs_cis[i, :img_len] = freqs_cis[i, cap_seq_len + sum(ref_img_len):cap_seq_len + sum(ref_img_len) + img_len]

        return (
            cap_freqs_cis,
            ref_img_freqs_cis,
            img_freqs_cis,
            freqs_cis,
            l_effective_cap_len,
            seq_lengths,
        )
    

class LuminaRMSNormZero(nn.Module):
    """
    Norm layer adaptive RMS normalization zero.

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
    """

    def __init__(
        self,
        embedding_dim: int,
        norm_eps: float,
        norm_elementwise_affine: bool,
    ):
        super().__init__()
        self.silu = nn.SiLU()
        self.linear = nn.Linear(
            min(embedding_dim, 1024),
            4 * embedding_dim,
            bias=True,
        )
        self.norm = RMSNorm(embedding_dim, eps=norm_eps)

    def forward(
        self,
        x: torch.Tensor,
        emb: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        emb = self.linear(self.silu(emb))
        scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None])
        return x, gate_msa, scale_mlp, gate_mlp
    

class LuminaLayerNormContinuous(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        conditioning_embedding_dim: int,
        # NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters
        # because the output is immediately scaled and shifted by the projected conditioning embeddings.
        # Note that AdaLayerNorm does not let the norm layer have scale and shift parameters.
        # However, this is how it was implemented in the original code, and it's rather likely you should
        # set `elementwise_affine` to False.
        elementwise_affine=True,
        eps=1e-5,
        bias=True,
        norm_type="layer_norm",
        out_dim: Optional[int] = None,
    ):
        super().__init__()

        # AdaLN
        self.silu = nn.SiLU()
        self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias)

        if norm_type == "layer_norm":
            self.norm = nn.LayerNorm(embedding_dim, eps, elementwise_affine, bias)
        elif norm_type == "rms_norm":
            self.norm = RMSNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine)
        else:
            raise ValueError(f"unknown norm_type {norm_type}")

        self.linear_2 = None
        if out_dim is not None:
            self.linear_2 = nn.Linear(embedding_dim, out_dim, bias=bias)

    def forward(
        self,
        x: torch.Tensor,
        conditioning_embedding: torch.Tensor,
    ) -> torch.Tensor:
        # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
        emb = self.linear_1(self.silu(conditioning_embedding).to(x.dtype))
        scale = emb
        x = self.norm(x) * (1 + scale)[:, None, :]

        if self.linear_2 is not None:
            x = self.linear_2(x)

        return x
    

class LuminaFeedForward(nn.Module):
    r"""
    A feed-forward layer.

    Parameters:
        hidden_size (`int`):
            The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
            hidden representations.
        intermediate_size (`int`): The intermediate dimension of the feedforward layer.
        multiple_of (`int`, *optional*): Value to ensure hidden dimension is a multiple
            of this value.
        ffn_dim_multiplier (float, *optional*): Custom multiplier for hidden
            dimension. Defaults to None.
    """

    def __init__(
        self,
        dim: int,
        inner_dim: int,
        multiple_of: Optional[int] = 256,
        ffn_dim_multiplier: Optional[float] = None,
    ):
        super().__init__()

        self.swiglu = swiglu
        
        # custom hidden_size factor multiplier
        if ffn_dim_multiplier is not None:
            inner_dim = int(ffn_dim_multiplier * inner_dim)
        inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of)

        self.linear_1 = nn.Linear(
            dim,
            inner_dim,
            bias=False,
        )
        self.linear_2 = nn.Linear(
            inner_dim,
            dim,
            bias=False,
        )
        self.linear_3 = nn.Linear(
            dim,
            inner_dim,
            bias=False,
        )

    def forward(self, x):
        h1, h2 = self.linear_1(x), self.linear_3(x)
        return self.linear_2(self.swiglu(h1, h2))


class Lumina2CombinedTimestepCaptionEmbedding(nn.Module):
    def __init__(
        self,
        hidden_size: int = 4096,
        text_feat_dim: int = 2048,
        frequency_embedding_size: int = 256,
        norm_eps: float = 1e-5,
        timestep_scale: float = 1.0,
    ) -> None:
        super().__init__()

        self.time_proj = Timesteps(
            num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=timestep_scale
        )

        self.timestep_embedder = TimestepEmbedding(
            in_channels=frequency_embedding_size, time_embed_dim=min(hidden_size, 1024)
        )

        self.caption_embedder = nn.Sequential(
            RMSNorm(text_feat_dim, eps=norm_eps),
            nn.Linear(text_feat_dim, hidden_size, bias=True),
        )
        
        self._initialize_weights()

    def _initialize_weights(self):
        nn.init.trunc_normal_(self.caption_embedder[1].weight, std=0.02)
        nn.init.zeros_(self.caption_embedder[1].bias)

    def forward(
        self, timestep: torch.Tensor, text_hidden_states: torch.Tensor, dtype: torch.dtype
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        timestep_proj = self.time_proj(timestep).to(dtype=dtype)
        time_embed = self.timestep_embedder(timestep_proj)
        caption_embed = self.caption_embedder(text_hidden_states)
        return time_embed, caption_embed
    

class OmniGen2AttnProcessor:
    """
    Processor for implementing scaled dot-product attention.
    
    This processor is optimized for PyTorch 2.0 and implements:
    - Flash attention with variable length sequences
    - Rotary position embeddings (RoPE)
    - Query-Key normalization
    - Proportional attention scaling
    
    Args:
        None
        
    Raises:
        ImportError: If PyTorch version is less than 2.0
    """

    def __init__(self) -> None:
        """Initialize the attention processor."""
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "OmniGen2AttnProcessorFlash2Varlen requires PyTorch 2.0. "
                "Please upgrade PyTorch to version 2.0 or later."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
        base_sequence_length: Optional[int] = None,
    ) -> torch.Tensor:
        """
        Process attention computation with flash attention.

        Args:
            attn: Attention module
            hidden_states: Hidden states tensor of shape (batch_size, seq_len, hidden_dim)
            encoder_hidden_states: Encoder hidden states tensor
            attention_mask: Optional attention mask tensor
            image_rotary_emb: Optional rotary embeddings for image tokens
            base_sequence_length: Optional base sequence length for proportional attention

        Returns:
            torch.Tensor: Processed hidden states after attention computation
        """
        batch_size, sequence_length, _ = hidden_states.shape

        # Get Query-Key-Value Pair
        query = attn.to_q(hidden_states)
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query_dim = query.shape[-1]
        inner_dim = key.shape[-1]
        head_dim = query_dim // attn.heads
        dtype = query.dtype

        # Get key-value heads
        kv_heads = inner_dim // head_dim

        # Reshape tensors for attention computation
        query = query.view(batch_size, -1, attn.heads, head_dim)
        key = key.view(batch_size, -1, kv_heads, head_dim)
        value = value.view(batch_size, -1, kv_heads, head_dim)

        # Apply Query-Key normalization
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply Rotary Position Embeddings
        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb, use_real=False)
            key = apply_rotary_emb(key, image_rotary_emb, use_real=False)

        query, key = query.to(dtype), key.to(dtype)

        # Calculate attention scale
        if base_sequence_length is not None:
            softmax_scale = math.sqrt(math.log(sequence_length, base_sequence_length)) * attn.scale
        else:
            softmax_scale = attn.scale

        # scaled_dot_product_attention expects attention_mask shape to be
        # (batch, heads, source_length, target_length)
        if attention_mask is not None:
            attention_mask = attention_mask.bool().view(batch_size, 1, 1, -1)

        query = query.transpose(1, 2)
        key = key.transpose(1, 2)
        value = value.transpose(1, 2)
        
        # explicitly repeat key and value to match query length, otherwise using enable_gqa=True results in MATH backend of sdpa in our test of pytorch2.6
        key = key.repeat_interleave(query.size(-3) // key.size(-3), -3)
        value = value.repeat_interleave(query.size(-3) // value.size(-3), -3)

        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, scale=softmax_scale
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.type_as(query)

        # Apply output projection
        hidden_states = attn.to_out[0](hidden_states)
        hidden_states = attn.to_out[1](hidden_states)
        
        return hidden_states

class OmniGen2TransformerBlock(nn.Module):
    """
    Transformer block for OmniGen2 model.
    
    This block implements a transformer layer with:
    - Multi-head attention with flash attention
    - Feed-forward network with SwiGLU activation
    - RMS normalization
    - Optional modulation for conditional generation
    
    Args:
        dim: Dimension of the input and output tensors
        num_attention_heads: Number of attention heads
        num_kv_heads: Number of key-value heads
        multiple_of: Multiple of which the hidden dimension should be
        ffn_dim_multiplier: Multiplier for the feed-forward network dimension
        norm_eps: Epsilon value for normalization layers
        modulation: Whether to use modulation for conditional generation
        use_fused_rms_norm: Whether to use fused RMS normalization
        use_fused_swiglu: Whether to use fused SwiGLU activation
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        num_kv_heads: int,
        multiple_of: int,
        ffn_dim_multiplier: float,
        norm_eps: float,
        modulation: bool = True,
    ) -> None:
        """Initialize the transformer block."""
        super().__init__()
        self.head_dim = dim // num_attention_heads
        self.modulation = modulation

        # Initialize attention layer
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            dim_head=dim // num_attention_heads,
            qk_norm="rms_norm",
            heads=num_attention_heads,
            kv_heads=num_kv_heads,
            eps=1e-5,
            bias=False,
            out_bias=False,
            processor=OmniGen2AttnProcessor(),
        )

        # Initialize feed-forward network
        self.feed_forward = LuminaFeedForward(
            dim=dim,
            inner_dim=4 * dim,
            multiple_of=multiple_of,
            ffn_dim_multiplier=ffn_dim_multiplier,
        )

        # Initialize normalization layers
        if modulation:
            self.norm1 = LuminaRMSNormZero(
                embedding_dim=dim,
                norm_eps=norm_eps,
                norm_elementwise_affine=True,
            )
        else:
            self.norm1 = RMSNorm(dim, eps=norm_eps)

        self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
        self.norm2 = RMSNorm(dim, eps=norm_eps)
        self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)

        self.initialize_weights()

    def initialize_weights(self) -> None:
        """
        Initialize the weights of the transformer block.
        
        Uses Xavier uniform initialization for linear layers and zero initialization for biases.
        """
        nn.init.xavier_uniform_(self.attn.to_q.weight)
        nn.init.xavier_uniform_(self.attn.to_k.weight)
        nn.init.xavier_uniform_(self.attn.to_v.weight)
        nn.init.xavier_uniform_(self.attn.to_out[0].weight)

        nn.init.xavier_uniform_(self.feed_forward.linear_1.weight)
        nn.init.xavier_uniform_(self.feed_forward.linear_2.weight)
        nn.init.xavier_uniform_(self.feed_forward.linear_3.weight)
        
        if self.modulation:
            nn.init.zeros_(self.norm1.linear.weight)
            nn.init.zeros_(self.norm1.linear.bias)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        image_rotary_emb: torch.Tensor,
        temb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """
        Forward pass of the transformer block.

        Args:
            hidden_states: Input hidden states tensor
            attention_mask: Attention mask tensor
            image_rotary_emb: Rotary embeddings for image tokens
            temb: Optional timestep embedding tensor

        Returns:
            torch.Tensor: Output hidden states after transformer block processing
        """
        if self.modulation:
            if temb is None:
                raise ValueError("temb must be provided when modulation is enabled")
                
            norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
            attn_output = self.attn(
                hidden_states=norm_hidden_states,
                encoder_hidden_states=norm_hidden_states,
                attention_mask=attention_mask,
                image_rotary_emb=image_rotary_emb,
            )
            hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output)
            mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
            hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
        else:
            norm_hidden_states = self.norm1(hidden_states)
            attn_output = self.attn(
                hidden_states=norm_hidden_states,
                encoder_hidden_states=norm_hidden_states,
                attention_mask=attention_mask,
                image_rotary_emb=image_rotary_emb,
            )
            hidden_states = hidden_states + self.norm2(attn_output)
            mlp_output = self.feed_forward(self.ffn_norm1(hidden_states))
            hidden_states = hidden_states + self.ffn_norm2(mlp_output)

        return hidden_states


class OmniGen2Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
    """
    OmniGen2 Transformer 2D Model.
    
    A transformer-based diffusion model for image generation with:
    - Patch-based image processing
    - Rotary position embeddings
    - Multi-head attention
    - Conditional generation support
    
    Args:
        patch_size: Size of image patches
        in_channels: Number of input channels
        out_channels: Number of output channels (defaults to in_channels)
        hidden_size: Size of hidden layers
        num_layers: Number of transformer layers
        num_refiner_layers: Number of refiner layers
        num_attention_heads: Number of attention heads
        num_kv_heads: Number of key-value heads
        multiple_of: Multiple of which the hidden dimension should be
        ffn_dim_multiplier: Multiplier for feed-forward network dimension
        norm_eps: Epsilon value for normalization layers
        axes_dim_rope: Dimensions for rotary position embeddings
        axes_lens: Lengths for rotary position embeddings
        text_feat_dim: Dimension of text features
        timestep_scale: Scale factor for timestep embeddings
        use_fused_rms_norm: Whether to use fused RMS normalization
        use_fused_swiglu: Whether to use fused SwiGLU activation
    """

    _supports_gradient_checkpointing = True
    _no_split_modules = ["Omnigen2TransformerBlock"]
    _skip_layerwise_casting_patterns = ["x_embedder", "norm"]

    @register_to_config
    def __init__(
        self,
        patch_size: int = 2,
        in_channels: int = 16,
        out_channels: Optional[int] = None,
        hidden_size: int = 2304,
        num_layers: int = 26,
        num_refiner_layers: int = 2,
        num_attention_heads: int = 24,
        num_kv_heads: int = 8,
        multiple_of: int = 256,
        ffn_dim_multiplier: Optional[float] = None,
        norm_eps: float = 1e-5,
        axes_dim_rope: Tuple[int, int, int] = (32, 32, 32),
        axes_lens: Tuple[int, int, int] = (300, 512, 512),
        text_feat_dim: int = 1024,
        timestep_scale: float = 1.0,
    ) -> None:
        """Initialize the OmniGen2 transformer model."""
        super().__init__()

        # Validate configuration
        if (hidden_size // num_attention_heads) != sum(axes_dim_rope):
            raise ValueError(
                f"hidden_size // num_attention_heads ({hidden_size // num_attention_heads}) "
                f"must equal sum(axes_dim_rope) ({sum(axes_dim_rope)})"
            )
        
        self.out_channels = out_channels or in_channels

        # Initialize embeddings
        self.rope_embedder = OmniGen2RotaryPosEmbed(
            theta=10000,
            axes_dim=axes_dim_rope,
            axes_lens=axes_lens,
            patch_size=patch_size,
        )

        self.x_embedder = nn.Linear(
            in_features=patch_size * patch_size * in_channels,
            out_features=hidden_size,
        )

        self.ref_image_patch_embedder = nn.Linear(
            in_features=patch_size * patch_size * in_channels,
            out_features=hidden_size,
        )

        self.time_caption_embed = Lumina2CombinedTimestepCaptionEmbedding(
            hidden_size=hidden_size,
            text_feat_dim=text_feat_dim,
            norm_eps=norm_eps,
            timestep_scale=timestep_scale,
        )

        # Initialize transformer blocks
        self.noise_refiner = nn.ModuleList([
            OmniGen2TransformerBlock(
                hidden_size,
                num_attention_heads,
                num_kv_heads,
                multiple_of,
                ffn_dim_multiplier,
                norm_eps,
                modulation=True,
            )
            for _ in range(num_refiner_layers)
        ])

        self.ref_image_refiner = nn.ModuleList([
            OmniGen2TransformerBlock(
                hidden_size,
                num_attention_heads,
                num_kv_heads,
                multiple_of,
                ffn_dim_multiplier,
                norm_eps,
                modulation=True,
            )
            for _ in range(num_refiner_layers)
        ])

        self.context_refiner = nn.ModuleList(
            [
                OmniGen2TransformerBlock(
                    hidden_size,
                    num_attention_heads,
                    num_kv_heads,
                    multiple_of,
                    ffn_dim_multiplier,
                    norm_eps,
                    modulation=False,
                )
                for _ in range(num_refiner_layers)
            ]
        )

        # 3. Transformer blocks
        self.layers = nn.ModuleList(
            [
                OmniGen2TransformerBlock(
                    hidden_size,
                    num_attention_heads,
                    num_kv_heads,
                    multiple_of,
                    ffn_dim_multiplier,
                    norm_eps,
                    modulation=True,
                )
                for _ in range(num_layers)
            ]
        )

        # 4. Output norm & projection
        self.norm_out = LuminaLayerNormContinuous(
            embedding_dim=hidden_size,
            conditioning_embedding_dim=min(hidden_size, 1024),
            elementwise_affine=False,
            eps=1e-6,
            bias=True,
            out_dim=patch_size * patch_size * self.out_channels,
        )
        
        # Add learnable embeddings to distinguish different images
        self.image_index_embedding = nn.Parameter(torch.randn(5, hidden_size)) # support max 5 ref images

        self.gradient_checkpointing = False

        self.initialize_weights()

    def initialize_weights(self) -> None:
        """
        Initialize the weights of the model.
        
        Uses Xavier uniform initialization for linear layers.
        """
        nn.init.xavier_uniform_(self.x_embedder.weight)
        nn.init.constant_(self.x_embedder.bias, 0.0)

        nn.init.xavier_uniform_(self.ref_image_patch_embedder.weight)
        nn.init.constant_(self.ref_image_patch_embedder.bias, 0.0)

        nn.init.zeros_(self.norm_out.linear_1.weight)
        nn.init.zeros_(self.norm_out.linear_1.bias)
        nn.init.zeros_(self.norm_out.linear_2.weight)
        nn.init.zeros_(self.norm_out.linear_2.bias)
        
        nn.init.normal_(self.image_index_embedding, std=0.02)

    def img_patch_embed_and_refine(
        self,
        hidden_states,
        ref_image_hidden_states,
        padded_img_mask,
        padded_ref_img_mask,
        noise_rotary_emb,
        ref_img_rotary_emb,
        l_effective_ref_img_len,
        l_effective_img_len,
        temb
    ):
        batch_size = len(hidden_states)
        max_combined_img_len = max([img_len + sum(ref_img_len) for img_len, ref_img_len in zip(l_effective_img_len, l_effective_ref_img_len)])
    
        hidden_states = self.x_embedder(hidden_states)
        ref_image_hidden_states = self.ref_image_patch_embedder(ref_image_hidden_states)
        
        for i in range(batch_size):
            shift = 0
            for j, ref_img_len in enumerate(l_effective_ref_img_len[i]):
                ref_image_hidden_states[i, shift:shift + ref_img_len, :] = ref_image_hidden_states[i, shift:shift + ref_img_len, :] + self.image_index_embedding[j]
                shift += ref_img_len

        for layer in self.noise_refiner:
            hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb)

        flat_l_effective_ref_img_len = list(itertools.chain(*l_effective_ref_img_len))
        num_ref_images = len(flat_l_effective_ref_img_len)
        max_ref_img_len = max(flat_l_effective_ref_img_len)

        batch_ref_img_mask = ref_image_hidden_states.new_zeros(num_ref_images, max_ref_img_len, dtype=torch.bool)
        batch_ref_image_hidden_states = ref_image_hidden_states.new_zeros(num_ref_images, max_ref_img_len, self.config.hidden_size)
        batch_ref_img_rotary_emb = hidden_states.new_zeros(num_ref_images, max_ref_img_len, ref_img_rotary_emb.shape[-1], dtype=ref_img_rotary_emb.dtype)
        batch_temb = temb.new_zeros(num_ref_images, *temb.shape[1:], dtype=temb.dtype)

        # sequence of ref imgs to batch
        idx = 0
        for i in range(batch_size):
            shift = 0
            for ref_img_len in l_effective_ref_img_len[i]:
                batch_ref_img_mask[idx, :ref_img_len] = True
                batch_ref_image_hidden_states[idx, :ref_img_len] = ref_image_hidden_states[i, shift:shift + ref_img_len]
                batch_ref_img_rotary_emb[idx, :ref_img_len] = ref_img_rotary_emb[i, shift:shift + ref_img_len]
                batch_temb[idx] = temb[i]
                shift += ref_img_len
                idx += 1

        # refine ref imgs separately
        for layer in self.ref_image_refiner:
            batch_ref_image_hidden_states = layer(batch_ref_image_hidden_states, batch_ref_img_mask, batch_ref_img_rotary_emb, batch_temb)

        # batch of ref imgs to sequence
        idx = 0
        for i in range(batch_size):
            shift = 0
            for ref_img_len in l_effective_ref_img_len[i]:
                ref_image_hidden_states[i, shift:shift + ref_img_len] = batch_ref_image_hidden_states[idx, :ref_img_len]
                shift += ref_img_len
                idx += 1
            
        combined_img_hidden_states = hidden_states.new_zeros(batch_size, max_combined_img_len, self.config.hidden_size)
        for i, (ref_img_len, img_len) in enumerate(zip(l_effective_ref_img_len, l_effective_img_len)):
            combined_img_hidden_states[i, :sum(ref_img_len)] = ref_image_hidden_states[i, :sum(ref_img_len)]
            combined_img_hidden_states[i, sum(ref_img_len):sum(ref_img_len) + img_len] = hidden_states[i, :img_len]

        return combined_img_hidden_states

    def flat_and_pad_to_seq(self, hidden_states, ref_image_hidden_states):
        batch_size = len(hidden_states)
        p = self.config.patch_size
        device = hidden_states[0].device

        img_sizes = [(img.size(1), img.size(2)) for img in hidden_states]
        l_effective_img_len = [(H // p) * (W // p) for (H, W) in img_sizes]

        if ref_image_hidden_states is not None:
            ref_img_sizes = [[(img.size(1), img.size(2)) for img in imgs] if imgs is not None else None for imgs in ref_image_hidden_states]
            l_effective_ref_img_len = [[(ref_img_size[0] // p) * (ref_img_size[1] // p) for ref_img_size in _ref_img_sizes] if _ref_img_sizes is not None else [0] for _ref_img_sizes in ref_img_sizes]
        else:
            ref_img_sizes = [None for _ in range(batch_size)]
            l_effective_ref_img_len = [[0] for _ in range(batch_size)]

        max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len])
        max_img_len = max(l_effective_img_len)

        # ref image patch embeddings
        flat_ref_img_hidden_states = []
        for i in range(batch_size):
            if ref_img_sizes[i] is not None:
                imgs = []
                for ref_img in ref_image_hidden_states[i]:
                    C, H, W = ref_img.size()
                    ref_img = rearrange(ref_img, 'c (h p1) (w p2) -> (h w) (p1 p2 c)', p1=p, p2=p)
                    imgs.append(ref_img)

                img = torch.cat(imgs, dim=0)
                flat_ref_img_hidden_states.append(img)
            else:
                flat_ref_img_hidden_states.append(None)

        # image patch embeddings
        flat_hidden_states = []
        for i in range(batch_size):
            img = hidden_states[i]
            C, H, W = img.size()
            
            img = rearrange(img, 'c (h p1) (w p2) -> (h w) (p1 p2 c)', p1=p, p2=p)
            flat_hidden_states.append(img)
        
        padded_ref_img_hidden_states = torch.zeros(batch_size, max_ref_img_len, flat_hidden_states[0].shape[-1], device=device, dtype=flat_hidden_states[0].dtype)
        padded_ref_img_mask = torch.zeros(batch_size, max_ref_img_len, dtype=torch.bool, device=device)
        for i in range(batch_size):
            if ref_img_sizes[i] is not None:
                padded_ref_img_hidden_states[i, :sum(l_effective_ref_img_len[i])] = flat_ref_img_hidden_states[i]
                padded_ref_img_mask[i, :sum(l_effective_ref_img_len[i])] = True

        padded_hidden_states = torch.zeros(batch_size, max_img_len, flat_hidden_states[0].shape[-1], device=device, dtype=flat_hidden_states[0].dtype)
        padded_img_mask = torch.zeros(batch_size, max_img_len, dtype=torch.bool, device=device)
        for i in range(batch_size):
            padded_hidden_states[i, :l_effective_img_len[i]] = flat_hidden_states[i]
            padded_img_mask[i, :l_effective_img_len[i]] = True

        return (
            padded_hidden_states,
            padded_ref_img_hidden_states,
            padded_img_mask,
            padded_ref_img_mask,
            l_effective_ref_img_len,
            l_effective_img_len,
            ref_img_sizes,
            img_sizes,
        )
    
    def forward(
        self,
        hidden_states: Union[torch.Tensor, List[torch.Tensor]],
        timestep: torch.Tensor,
        text_hidden_states: torch.Tensor,
        freqs_cis: torch.Tensor,
        text_attention_mask: torch.Tensor,
        ref_image_hidden_states: Optional[List[List[torch.Tensor]]] = None,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = False,
    ) -> Union[torch.Tensor, Transformer2DModelOutput]:
        if attention_kwargs is not None:
            attention_kwargs = attention_kwargs.copy()
            lora_scale = attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
                )

        # 1. Condition, positional & patch embedding
        batch_size = len(hidden_states)
        is_hidden_states_tensor = isinstance(hidden_states, torch.Tensor)

        if is_hidden_states_tensor:
            assert hidden_states.ndim == 4
            hidden_states = [_hidden_states for _hidden_states in hidden_states]

        device = hidden_states[0].device

        temb, text_hidden_states = self.time_caption_embed(timestep, text_hidden_states, hidden_states[0].dtype)

        (
            hidden_states,
            ref_image_hidden_states,
            img_mask,
            ref_img_mask,
            l_effective_ref_img_len,
            l_effective_img_len,
            ref_img_sizes,
            img_sizes,
        ) = self.flat_and_pad_to_seq(hidden_states, ref_image_hidden_states)
        
        (
            context_rotary_emb,
            ref_img_rotary_emb,
            noise_rotary_emb,
            rotary_emb,
            encoder_seq_lengths,
            seq_lengths,
        ) = self.rope_embedder(
            freqs_cis,
            text_attention_mask,
            l_effective_ref_img_len,
            l_effective_img_len,
            ref_img_sizes,
            img_sizes,
            device,
        )

        # 2. Context refinement
        for layer in self.context_refiner:
            text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb)
        
        combined_img_hidden_states = self.img_patch_embed_and_refine(
            hidden_states,
            ref_image_hidden_states,
            img_mask,
            ref_img_mask,
            noise_rotary_emb,
            ref_img_rotary_emb,
            l_effective_ref_img_len,
            l_effective_img_len,
            temb,
        )

        # 3. Joint Transformer blocks
        max_seq_len = max(seq_lengths)

        attention_mask = hidden_states.new_zeros(batch_size, max_seq_len, dtype=torch.bool)
        joint_hidden_states = hidden_states.new_zeros(batch_size, max_seq_len, self.config.hidden_size)
        for i, (encoder_seq_len, seq_len) in enumerate(zip(encoder_seq_lengths, seq_lengths)):
            attention_mask[i, :seq_len] = True
            joint_hidden_states[i, :encoder_seq_len] = text_hidden_states[i, :encoder_seq_len]
            joint_hidden_states[i, encoder_seq_len:seq_len] = combined_img_hidden_states[i, :seq_len - encoder_seq_len]

        hidden_states = joint_hidden_states

        for layer_idx, layer in enumerate(self.layers):
            if torch.is_grad_enabled() and self.gradient_checkpointing:
                hidden_states = self._gradient_checkpointing_func(
                    layer, hidden_states, attention_mask, rotary_emb, temb
                )
            else:
                hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb)

        # 4. Output norm & projection
        hidden_states = self.norm_out(hidden_states, temb)

        p = self.config.patch_size
        output = []
        for i, (img_size, img_len, seq_len) in enumerate(zip(img_sizes, l_effective_img_len, seq_lengths)):
            height, width = img_size
            output.append(rearrange(hidden_states[i][seq_len - img_len:seq_len], '(h w) (p1 p2 c) -> c (h p1) (w p2)', h=height // p, w=width // p, p1=p, p2=p))
        if is_hidden_states_tensor:
            output = torch.stack(output, dim=0)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return output
        return Transformer2DModelOutput(sample=output)