|
--- |
|
license: other |
|
--- |
|
|
|
|
|
![Aquila_logo](./log.jpeg) |
|
|
|
|
|
<h4 align="center"> |
|
<p> |
|
<a href="https://huggingface.co/BAAI/AquilaChat2-34B/blob/main/README.md">English</a> |
|
<b>简体中文</b> | |
|
</p> |
|
</h4> |
|
|
|
# 悟道·天鹰(Aquila2) |
|
|
|
我们开源了我们的 **Aquila2** 系列,现在包括基础语言模型 **Aquila2-7B** 和 **Aquila2-34B** ,对话模型 **AquilaChat2-7B** 和 **AquilaChat2-34B**,长文本对话模型**AquilaChat2-7B-16k** 和 **AquilaChat2-34B-16k** |
|
|
|
悟道 · 天鹰 Aquila 模型的更多细节将在官方技术报告中呈现。请关注官方渠道更新。 |
|
|
|
## 对话模型性能 |
|
|
|
<br> |
|
<p align="center"> |
|
<img src="chat_metrics_CN.jpeg" width="1024"/> |
|
<p> |
|
<br> |
|
|
|
## 快速开始使用 AquilaChat2-34B |
|
|
|
|
|
## 使用方式/How to use |
|
|
|
### 1. 推理/Inference |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
device = torch.device("cuda") |
|
model_info = "BAAI/AquilaChat2-34B" |
|
tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True) |
|
model.eval() |
|
model.to(device) |
|
text = "请给出10个要到北京旅游的理由。" |
|
tokens = tokenizer.encode_plus(text)['input_ids'] |
|
tokens = torch.tensor(tokens)[None,].to(device) |
|
stop_tokens = ["###", "[UNK]", "</s>"] |
|
with torch.no_grad(): |
|
out = model.generate(tokens, do_sample=True, max_length=512, eos_token_id=100007, bad_words_ids=[[tokenizer.encode(token)[0] for token in stop_tokens]])[0] |
|
out = tokenizer.decode(out.cpu().numpy().tolist()) |
|
print(out) |
|
``` |
|
|
|
|
|
## 证书/License |
|
|
|
Aquila2系列开源模型使用 [智源Aquila系列模型许可协议](https://huggingface.co/BAAI/AquilaChat2-34B/blob/main/BAAI-Aquila-Model-License%20-Agreement.pdf) |