File size: 15,684 Bytes
b170003 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
from argparse import ArgumentParser
import math
import multiprocessing as mp
import os
import pickle
import sys
sys.path.append('..')
from sklearn.metrics import precision_recall_fscore_support
from sklearn.utils.class_weight import compute_class_weight
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import set_seed, get_linear_schedule_with_warmup
from gnn_1_model import GNN_1_Model as Model
from regex_lib import parse_composition
from utils import *
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
print('using device:', device)
parser = ArgumentParser()
parser.add_argument('--seed', required=True, type=int)
parser.add_argument('--hidden_layer_sizes', nargs='+', required=True, type=int)
parser.add_argument('--num_heads', nargs='+', required=True, type=int)
parser.add_argument('--num_epochs', required=False, default=15, type=int)
parser.add_argument('--lr', required=False, default=1e-3, type=float)
parser.add_argument('--lm_lr', required=False, default=1e-5, type=float)
parser.add_argument('--use_regex_feat', action='store_true')
parser.add_argument('--use_max_freq_feat', action='store_true')
parser.add_argument('--add_constraint', action='store_true')
parser.add_argument('--regex_emb_size', required=False, default=256, type=int)
parser.add_argument('--max_freq_emb_size', required=False, default=256, type=int)
parser.add_argument('--c_loss_lambda', required=False, default=50.0, type=float)
parser.add_argument('--gid_loss_lambda', required=False, default=1.0, type=float)
parser.add_argument('--model_save_file', required=True, type=str)
parser.add_argument('--res_file', required=False, type=str)
args = parser.parse_args()
print(args)
lm_name = 'm3rg-iitd/matscibert'
cache_dir = os.path.join(table_dir, '.cache')
os.makedirs(os.path.dirname(os.path.abspath(args.model_save_file)), exist_ok=True)
if args.use_regex_feat:
for c in tqdm(comp_data):
c['regex_feats'] = get_regex_feats(c['act_table'])
if args.use_max_freq_feat:
for c in comp_data:
c['max_freq_feat'] = get_max_freq_feat(c['act_table'])
torch.set_deterministic(True)
torch.backends.cudnn.benchmark = False
datasets = dict()
for split in splits:
datasets[split] = TableDataset([comp_data_dict[pii_t_idx] for pii_t_idx in train_val_test_split[split]])
set_seed(args.seed)
batch_size = 8
num_workers = mp.cpu_count()
loaders = dict()
for split in splits:
loaders[split] = DataLoader(datasets[split], batch_size=batch_size, shuffle=(split == 'train'), \
num_workers=num_workers, collate_fn=lambda x: x)
all_train_regex_labels = [x['regex_table'] for x in datasets['train']]
all_train_gid_labels = []
for x in datasets['train']:
all_train_gid_labels += x['gid_row_label'] + x['gid_col_label']
num_epochs = args.num_epochs
n_batches = math.ceil(len(datasets['train']) / batch_size)
n_steps = n_batches * num_epochs
warmup_steps = n_steps // 10
model_args = {
'hidden_layer_sizes': args.hidden_layer_sizes,
'num_heads': args.num_heads,
'lm_name': lm_name,
'cache_dir': cache_dir,
'use_regex_feat': args.use_regex_feat,
'use_max_freq_feat': args.use_max_freq_feat,
'add_constraint': args.add_constraint,
'regex_emb_size': args.regex_emb_size,
'max_freq_emb_size': args.max_freq_emb_size,
}
model = Model(model_args).to(device)
optim_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if 'encoder' not in n], 'lr': args.lr},
{'params': [p for n, p in model.named_parameters() if 'encoder' in n], 'lr': args.lm_lr},
]
optim = torch.optim.AdamW(optim_grouped_parameters)
regex_class_weights = torch.Tensor(compute_class_weight('balanced', classes=[0, 1], y=all_train_regex_labels)).to(device)
regex_loss_fn = nn.CrossEntropyLoss(weight=regex_class_weights)
gid_class_weights = torch.Tensor(compute_class_weight('balanced', classes=[0, 1], y=all_train_gid_labels)).to(device)
gid_loss_fn = nn.CrossEntropyLoss(weight=gid_class_weights)
scheduler = get_linear_schedule_with_warmup(optim, num_warmup_steps=warmup_steps, num_training_steps=n_steps)
gold_tuples = dict()
for split in ['val', 'test']:
gold_tuples[split] = []
for pii, t_idx in train_val_test_split[split]:
gold_tuples[split] += get_gold_tuples(pii, t_idx)
def get_pred_tuples(pii_t_idx: tuple, regex_table: list, orient: str, gid):
gid_list = []
c = comp_data_dict[pii_t_idx]
table = c['act_table']
pii, t_idx = pii_t_idx
if orient == 'row':
for i in range(len(table)):
if gid is not None and table[i][gid]:
gid_list.append('_' + table[i][gid])
else:
gid_list.append('')
else:
for j in range(len(table[0])):
if gid is not None and table[gid][j]:
gid_list.append('_' + table[gid][j])
else:
gid_list.append('')
tuples = []
for i in range(len(table)):
for j in range(len(table[0])):
if regex_table[i][j] is None: continue
prefix = f'{pii}_{t_idx}_{i}_{j}_0'
for x in regex_table[i][j]:
if x[1] == 0: continue
gid = gid_list[i] if orient == 'row' else gid_list[j]
tuples.append((prefix + gid, x[0], x[1], pred_cell_mol_wt(c, i, j)))
return tuples
def get_regex_table_and_orient(table):
regex_table = []
regex_label = 0
for r in table:
res_r = []
for cell in r:
comp = parse_composition(cell)
if len(comp) == 0 or len(comp[0][0]) == 1:
res_r.append(None)
continue
l = comp[0][0]
new_l = []
for x in l:
if type(x[1]) == float:
x = (x[0], round(x[1], 5))
elif type(x[1]) == int:
x = (x[0], float(x[1]))
new_l.append(x)
if all(type(x[1]) == float for x in new_l):
regex_label = 1
res_r.append(new_l)
else:
res_r.append(None)
regex_table.append(res_r)
if regex_label == 0:
return None, None
row_max = 0
for r in range(len(table)):
curr = 0
for comp in regex_table[r]:
if type(comp) == list:
curr += 1
row_max = max(row_max, curr)
col_max = 0
for c in range(len(table[0])):
curr = 0
for r in range(len(table)):
if type(regex_table[r][c]) == list:
curr += 1
col_max = max(col_max, curr)
if row_max <= col_max:
return regex_table, 'row'
return regex_table, 'col'
def get_gid_labels_and_tuples(gid_logits, scc_label: int, pii_t_idx: tuple, num_rows: int, num_cols: int):
row_gid_labels, col_gid_labels = [0] * num_rows, [0] * num_cols
if scc_label == 0:
return row_gid_labels + col_gid_labels, []
regex_table, orient = get_regex_table_and_orient(comp_data_dict[pii_t_idx]['act_table'])
if orient is None:
return row_gid_labels + col_gid_labels, []
gid = None
if orient == 'row':
gid_col_probs = F.softmax(gid_logits[num_rows:], dim=1)
gid_idx = gid_col_probs[:, 1].argmax()
if gid_col_probs[gid_idx, 1] > 0.5:
col_gid_labels[gid_idx] = 1
gid = gid_idx
else:
gid_row_probs = F.softmax(gid_logits[:num_rows], dim=1)
gid_idx = gid_row_probs[:, 1].argmax()
if gid_row_probs[gid_idx, 1] > 0.5:
row_gid_labels[gid_idx] = 1
gid = gid_idx
return row_gid_labels + col_gid_labels, get_pred_tuples(pii_t_idx, regex_table, orient, gid)
def get_batch_gid_labels_and_tuples(gid_logits, scc_labels: list, pii_t_idxs: list, num_rows: list, num_cols: list):
base_gid = 0
pred_gid_labels, pred_tuples = [], []
for pii_t_idx, regex_label, r, c in zip(pii_t_idxs, scc_labels, num_rows, num_cols):
num_gid_logits = r + c
gids_labels, tuples = get_gid_labels_and_tuples(
gid_logits[base_gid:base_gid+num_gid_logits], regex_label, pii_t_idx, r, c)
pred_gid_labels += gids_labels
pred_tuples.append(tuples)
base_gid += num_gid_logits
return pred_gid_labels, pred_tuples
losses = ['regex', 'gid', 'constraint']
coeffs = [1.0, args.gid_loss_lambda, args.c_loss_lambda]
def train_model(epoch):
model.train()
epoch_loss = {l: 0.0 for l in losses}
curr_coeffs = coeffs.copy()
if epoch < 3:
curr_coeffs[2] = 0.0
n_batches = len(loaders['train'])
tepoch = tqdm(loaders['train'], unit='batch')
batch_loss = dict()
for batch_data in tepoch:
tepoch.set_description(f'Epoch {epoch}')
torch.cuda.empty_cache()
(scc_logits, scc_labels), (gid_logits, gid_labels), (batch_loss[losses[2]], ), = model(batch_data)
batch_loss[losses[0]] = regex_loss_fn(scc_logits, scc_labels)
batch_loss[losses[1]] = gid_loss_fn(gid_logits, gid_labels)
for l in losses:
epoch_loss[l] += batch_loss[l].item()
loss = sum(curr_coeffs[i] * batch_loss[losses[i]] for i in range(len(losses)))
optim.zero_grad()
loss.backward()
optim.step()
scheduler.step()
del scc_logits, scc_labels, gid_logits, gid_labels
for l in losses:
epoch_loss[l] /= n_batches
return epoch_loss
def eval_model(split, debug=False):
model.eval()
identifier = []
y_scc_true, y_scc_pred = [], []
y_gids_true, y_gids_pred, ret_gids_pred = [], [], []
ret_tuples_pred = []
y_true_scc_gids, ret_true_scc_gids, ret_true_scc_tuples = [], [], []
with torch.no_grad():
tepoch = tqdm(loaders[split], unit='batch')
for batch_data in tepoch:
tepoch.set_description(f'{split} mode')
(scc_logits, scc_labels), (gid_logits, gid_labels) = model(batch_data)
true_regex_labels = scc_labels.cpu().detach().tolist()
pred_regex_labels = scc_logits.argmax(1).cpu().detach().tolist()
y_scc_true += true_regex_labels
y_scc_pred += pred_regex_labels
y_gids_true += gid_labels.cpu().detach().tolist()
pred_gid_labels = gid_logits.argmax(1).cpu().detach().tolist()
base = 0
for p, x in zip(pred_regex_labels, batch_data):
if p == 1:
y_gids_pred += pred_gid_labels[base:base+x['num_rows']+x['num_cols']]
else:
y_gids_pred += [0] * (x['num_rows'] + x['num_cols'])
base += x['num_rows'] + x['num_cols']
if debug:
base = 0
for p, x in zip(true_regex_labels, batch_data):
if p == 1:
y_true_scc_gids += pred_gid_labels[base:base+x['num_rows']+x['num_cols']]
else:
y_true_scc_gids += [0] * (x['num_rows'] + x['num_cols'])
base += x['num_rows'] + x['num_cols']
num_rows, num_cols = [x['num_rows'] for x in batch_data], [x['num_cols'] for x in batch_data]
pii_t_idxs = [(x['pii'], x['t_idx']) for x in batch_data]
identifier += pii_t_idxs
pred_gid_labels, pred_tuples = get_batch_gid_labels_and_tuples(
gid_logits.cpu().detach(), pred_regex_labels, pii_t_idxs, num_rows, num_cols)
ret_tuples_pred += pred_tuples
if not debug: continue
base_gid = 0
for x in batch_data:
gid_dict = dict()
gid_dict['row'] = pred_gid_labels[base_gid:base_gid+x['num_rows']]
base_gid += x['num_rows']
gid_dict['col'] = pred_gid_labels[base_gid:base_gid+x['num_cols']]
base_gid += x['num_cols']
ret_gids_pred.append(gid_dict)
pred_gid_labels, pred_tuples = get_batch_gid_labels_and_tuples(
gid_logits.cpu().detach(), true_regex_labels, pii_t_idxs, num_rows, num_cols)
ret_true_scc_tuples += pred_tuples
for x in batch_data:
gid_dict = dict()
gid_dict['row'] = pred_gid_labels[base_gid:base_gid+x['num_rows']]
base_gid += x['num_rows']
gid_dict['col'] = pred_gid_labels[base_gid:base_gid+x['num_cols']]
base_gid += x['num_cols']
ret_true_scc_gids.append(gid_dict)
prec, recall, fscore, _ = precision_recall_fscore_support(y_scc_true, y_scc_pred, average='binary')
scc_metrics = {'precision': prec, 'recall': recall, 'fscore': fscore}
prec, recall, fscore, _ = precision_recall_fscore_support(y_gids_true, y_gids_pred, average='binary')
gids_metrics = {'precision': prec, 'recall': recall, 'fscore': fscore}
all_pred_tuples = []
for t in ret_tuples_pred:
all_pred_tuples += t
tuple_metrics = get_tuples_metrics(gold_tuples[split], all_pred_tuples)
composition_metrics = get_composition_metrics(gold_tuples[split], all_pred_tuples)
if not debug:
return scc_metrics, gids_metrics, tuple_metrics, composition_metrics
else:
return identifier, (scc_metrics, y_scc_pred), (gids_metrics, y_gids_pred, ret_gids_pred), \
(y_true_scc_gids, ret_true_scc_gids), (tuple_metrics, ret_tuples_pred), \
(ret_true_scc_tuples, ), composition_metrics
best_val = 0.0
for epoch in range(num_epochs):
epoch_loss = train_model(epoch)
print(f'Epoch {epoch} | Loss {epoch_loss}')
val_stats = eval_model('val')
print('Val Stats\n', val_stats)
test_stats = eval_model('test')
print('Test Stats\n', test_stats)
print()
if val_stats[-1]['fscore'] > best_val:
best_val = val_stats[-1]['fscore']
torch.save(model.state_dict(), args.model_save_file)
model.load_state_dict(torch.load(args.model_save_file, map_location=torch.device('cpu')))
model = model.to(device)
res = {'val': dict(), 'test': dict()}
print()
for s in res.keys():
res[s]['identifier'], (res[s]['scc_stats'], res[s]['scc_pred']), (res[s]['gid_stats'], \
res[s]['gid_pred_orig'], res[s]['gid_pred']), (res[s]['true_scc_gid_pred_orig'], \
res[s]['true_scc_gid_pred']), (res[s]['tuple_metrics'], res[s]['tuples_pred']), \
(res[s]['true_scc_tuples_pred'], ), res[s]['composition_metrics'] = eval_model(s, debug=True)
print(f'{s} scc: \n', res[s]['scc_stats'])
print(f'{s} gid: \n', res[s]['gid_stats'])
print(f'{s} tuple metrics: \n', res[s]['tuple_metrics'])
print(f'{s} composition metrics: \n', res[s]['composition_metrics'])
for k in ['gid_pred_orig', 'true_scc_gid_pred_orig']:
gid_pred_orig = []
base = 0
for pii_t_idx in res[s]['identifier']:
c = comp_data_dict[pii_t_idx]
d = dict()
d['row'] = res[s][k][base:base+c['num_rows']]
base += c['num_rows']
d['col'] = res[s][k][base:base+c['num_cols']]
base += c['num_cols']
gid_pred_orig.append(d)
res[s][k] = gid_pred_orig
violations, total = 0, 0
for table in res[s]['gid_pred_orig']:
v, t = cnt_3_3_violations(table)
violations += v
total += t
print(f'{s} 3_3_violations: {violations}/{total}')
res[s]['3_3_violations'] = violations
if args.res_file:
os.makedirs(os.path.join(table_dir, 'res_dir'), exist_ok=True)
pickle.dump(res, open(os.path.join(table_dir, 'res_dir', args.res_file), 'wb'))
# os.remove(args.model_save_file)
|