File size: 16,585 Bytes
b170003 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
"""
---------------------------------------------------------------------------------------------------------
SciGlass Database is obtained from : https://github.com/epam/SciGlass
We thank the repository owner for publically releasing the dataset. The license for the same is provided below.
---------------------------------------------------------------------------------------------------------
ODC Open Database License (ODbL)
Copyright (c) 2019 EPAM Systems
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
---------------------------------------------------------------------------------------------------------
"""
from collections import defaultdict, Counter
import os
import pickle
import re
import sys
sys.path.append('..')
from tqdm import tqdm
from sympy import solve, sympify
from regex_lib import *
table_dir = '../../data'
train_data = pickle.load(open(os.path.join(table_dir, 'train_data_mcc_ci.pkl'), 'rb'))
train_data = [c for c in train_data if c['regex_table'] == 0 and not c['comp_table']]
train_data_dict = {(c['pii'], c['t_idx']): c for c in train_data}
train_piis = list(set(pii for pii, _ in train_data_dict))
data = pickle.load(open(os.path.join(table_dir, 'train_val_test_paper_data.pkl'), 'rb'))
for pii in data.keys():
data[pii]['tables_captions'] = ''
for c in train_data:
data[c['pii']]['tables_captions'] += c['caption'].replace('\n', ' ') + '\n'
pii_glass_ids = pickle.load(open(os.path.join(table_dir, 'sciglass_pii_gids.pkl'), 'rb'))
def non_zero_cols(df):
return df.T[df.astype(bool).sum(axis=0) > 0].index.to_list()
composition = {
'mol': pickle.load(open(os.path.join(table_dir, 'sciglass_composition_mol.pkl'), 'rb')),
'wt': pickle.load(open(os.path.join(table_dir, 'sciglass_composition_wt.pkl'), 'rb')),
}
gids = dict()
avail_glass_ids = set()
for k in composition.keys():
composition[k] = composition[k][(composition[k].sum(axis=1).round() == 100)]
gids[k] = set(composition[k].index) & set(pii_glass_ids['GLASNO'])
composition[k] = composition[k].loc[gids[k]].sort_index()
composition[k] = composition[k][non_zero_cols(composition[k])]
avail_glass_ids |= gids[k]
extracted_regex = defaultdict(dict)
pii_constituents = dict()
def extract_regex_from_paper_text(pii):
glass_ids = set(pii_glass_ids.loc[pii_glass_ids['PII'] == pii, 'GLASNO']) & avail_glass_ids
if len(glass_ids) == 0: return
constituents = set()
for k in composition.keys():
constituents |= set(non_zero_cols(composition[k].loc[glass_ids & gids[k]]))
constituents -= set(['RO', 'RO2', 'R2O', 'R2O3'])
pii_constituents[pii] = constituents
if len(constituents) == 0: return
for section, text in data[pii].items():
extracted_regex[pii][section] = parse_composition(text, constituents)
for pii in tqdm(train_piis):
extract_regex_from_paper_text(pii)
regex_piis = list(extracted_regex.keys())
for pii in regex_piis:
remove = True
for section in extracted_regex[pii].keys():
extracted_regex[pii][section] = [c for c in extracted_regex[pii][section] if len(c[0]) > 1]
if len(extracted_regex[pii][section]) > 0:
remove = False
if remove: extracted_regex.pop(pii)
regex_piis = list(extracted_regex.keys())
for pii in regex_piis:
remove = True
for l in extracted_regex[pii].values():
for x in l:
if type(x[0][0][1]) == str:
remove = False
if remove: extracted_regex.pop(pii)
regex_piis = list(extracted_regex.keys())
pii_vars = defaultdict(set)
for pii in regex_piis:
l = []
for ll in extracted_regex[pii].values():
l += ll
for c in l:
assert type(c[0]) == list
for x in c[0]:
if type(x[1]) == str:
for var in comp_vars:
if var in x[1]:
pii_vars[pii].add(var)
var_regex_piis = dict()
for pii in regex_piis:
l = []
for ll in extracted_regex[pii].values():
l += ll
l = [c[0] for c in l]
var_regex_piis[pii] = []
for c in l:
var_comp = False
for x in c:
if type(x[1]) == str:
var_comp = True
break
if not var_comp: continue
match = False
for cc, _ in var_regex_piis[pii]:
if dict(c) == dict(cc):
match = True
break
if match: continue
vars = set()
for x in c:
if type(x[1]) == str:
for var in comp_vars:
if var in x[1]:
vars.add(var)
var_regex_piis[pii].append((c, vars))
def viewcomp(df):
return df.T[df.astype(bool).sum(axis=0) > 0].T
num_pattern = re.compile(r'-?\d+\.\d+|-?\d+')
def get_cons_pattern(pii):
comp_list = sorted(list(pii_constituents[pii]), key=lambda x: -len(x))
comp_list = [c.replace('(', '\(').replace(')', '\)') for c in comp_list]
return re.compile('|'.join(comp_list))
def get_var_pattern(pii):
return re.compile(r'(?:^|[^\w-])(' + '|'.join(sorted(pii_vars[pii])) + r')')
def get_comp_and_nums(table, cons_pattern, var_pattern):
comps, nums = [], []
for r in table:
r_comps, r_nums = [], []
for cell in r:
found_constituents = list(set(re.findall(cons_pattern, cell)))
subs_cell = re.sub(cons_pattern, ' ', cell)
found_vars = list(set(m.group(1) for m in re.finditer(var_pattern, subs_cell)))
subs_cell = re.sub(var_pattern, ' ', subs_cell).lower()
r_comps.append(found_constituents + found_vars)
if found_constituents:
cell_nums = re.findall(num_pattern, subs_cell)
r_nums.append(list(map(float, cell_nums)))
else:
m = re.search(r'[a-z]', subs_cell)
end_idx = m.start() if m is not None else len(subs_cell)
cell_nums = re.findall(num_pattern, subs_cell[:end_idx])
r_nums.append(list(map(float, cell_nums)))
comps.append(r_comps)
nums.append(r_nums)
return comps, nums
tables_comp, tables_nums = dict(), dict()
for c in train_data:
if c['pii'] not in regex_piis: continue
k = (c['pii'], c['t_idx'])
tables_comp[k], tables_nums[k] = get_comp_and_nums(c['act_table'], get_cons_pattern(c['pii']), get_var_pattern(c['pii']))
def match_num_in_table(pii_t_idx, num, regex_comp, regex_vars, db_comps, tol=1e-2):
if num < 0: return -1
regex_var = list(regex_vars)[0]
subs_comp = dict()
for comp, perc in regex_comp:
try:
subs_comp[comp] = eval_expr(perc.replace(regex_var, str(num))) if type(perc) == str else perc
except ZeroDivisionError:
return -1
assert len(subs_comp) == len(regex_comp)
if any(v < 0 for v in subs_comp.values()): return -1
subs_comp = {k: v for k, v in subs_comp.items() if v > 0}
for i in range(len(db_comps)):
db_comp = dict(db_comps.iloc[i])
db_comp = {k: v for k, v in db_comp.items() if v > 0}
if set(subs_comp.keys()) != set(db_comp.keys()): continue
match = True
for k in db_comp.keys():
if db_comp[k] * (1 - tol) <= subs_comp[k] <= db_comp[k] * (1 + tol): pass
else:
match = False
break
if match: return i
return -1
def get_table_edges_for_regex_comp(pii_t_idx, regex_comp, regex_vars, db_comps):
comps, nums = tables_comp[pii_t_idx], tables_nums[pii_t_idx]
comp_locations = defaultdict(list)
for i, r in enumerate(comps):
for j, c in enumerate(r):
for comp in c:
comp_locations[comp].append((i, j))
regex_var = list(regex_vars)[0]
edges = []
if regex_var in comp_locations:
var_locs = comp_locations[regex_var]
src = defaultdict(list)
possible_num_locs = set()
for x, y in var_locs:
for i in range(x, len(comps)):
possible_num_locs.add((i, y))
src[(i, y)].append((x, y))
for j in range(y, len(comps[0])):
possible_num_locs.add((x, j))
src[(x, j)].append((x, y))
for x, y in possible_num_locs:
if len(nums[x][y]) == 0: continue
num = nums[x][y][0]
if num < 0: continue
if match_num_in_table(pii_t_idx, num, regex_comp, regex_vars, db_comps) != -1:
for s in src[(x, y)]:
edges.append((s, (x, y)))
for comp, perc in regex_comp:
if type(perc) != str or comp not in comp_locations: continue
var_locs = comp_locations[comp]
src = defaultdict(list)
possible_num_locs = set()
for x, y in var_locs:
for i in range(x, len(comps)):
possible_num_locs.add((i, y))
src[(i, y)].append((x, y))
for j in range(y, len(comps[0])):
possible_num_locs.add((x, j))
src[(x, j)].append((x, y))
for x, y in possible_num_locs:
if len(nums[x][y]) == 0: continue
num = nums[x][y][0]
if num < 0: continue
for d in [1, 100]:
if num / d > 1: continue
sol = solve(sympify(f'Eq({perc}, {num/d})'))
if len(sol) == 0: continue
assert len(sol) == 1
if match_num_in_table(pii_t_idx, float(sol[0]), regex_comp, regex_vars, db_comps) != -1:
for s in src[(x, y)]:
edges.append((s, (x, y)))
break
return edges
def l1_dist(a, b):
return abs(a[0] - b[0]) + abs(a[1] - b[1])
def get_farthest(p, l):
res = l[0]
for p_ in l:
if l1_dist(p, p_) > l1_dist(p, res):
res = p_
return res
def get_table_edges(pii_t_idx):
pii, t_idx = pii_t_idx
glass_ids = set(pii_glass_ids.loc[pii_glass_ids['PII'] == pii, 'GLASNO']) & avail_glass_ids
res = []
if len(glass_ids) == 0: return res
r, c = train_data_dict[pii_t_idx]['num_rows'], train_data_dict[pii_t_idx]['num_cols']
for k in composition.keys():
db_comps = viewcomp(composition[k].loc[glass_ids & gids[k]]) / 100
for regex_comp, regex_vars in var_regex_piis[pii]:
if len(regex_vars) == 1:
res += get_table_edges_for_regex_comp(pii_t_idx, regex_comp, regex_vars, db_comps)
edges = sorted(set(res))
edges_src, edges_dst = defaultdict(set), defaultdict(set)
for src, dst in edges:
edges_src[src].add(dst)
for src in edges_src.keys():
if src in edges_src[src]:
edges_src[src] = set([src])
for dst in edges_src[src]:
edges_dst[dst].add(src)
for dst in edges_dst.keys():
if dst in edges_dst[dst]:
edges_dst[dst] = set([dst])
edges_dst[dst] = list(edges_dst[dst])
edges = []
for dst in edges_dst.keys():
if len(edges_dst[dst]) == 1:
edges.append((dst, edges_dst[dst][0]))
continue
edges.append((dst, get_farthest(dst, edges_dst[dst])))
return sorted(edges)
regex_edges = dict()
for c in tqdm(train_data):
if c['pii'] not in regex_piis: continue
k = (c['pii'], c['t_idx'])
edges = get_table_edges(k)
if len(edges) > 0:
regex_edges[k] = edges
orient = dict()
for pii_t_idx in regex_edges.keys():
if len(regex_edges[pii_t_idx]) == 1:
e = regex_edges[pii_t_idx][0]
if e[0] == e[1]: # self edge
pass
elif e[0][1] == e[1][1]: # same column
orient[pii_t_idx] = 'row'
elif e[0][0] == e[1][0]: # same row
orient[pii_t_idx] = 'col'
else:
srcs = [e[0] for e in regex_edges[pii_t_idx]]
rows, cols = set([x[0] for x in srcs]), set([x[1] for x in srcs])
assert len(rows) > 1 or len(cols) > 1
if len(cols) == 1:
orient[pii_t_idx] = 'row'
elif len(rows) == 1:
orient[pii_t_idx] = 'col'
else:
if all(e[0] != e[1] for e in regex_edges[pii_t_idx]):
same_cols = sum(e[0][1] == e[1][1] for e in regex_edges[pii_t_idx])
same_rows = sum(e[0][0] == e[1][0] for e in regex_edges[pii_t_idx])
orient[pii_t_idx] = 'row' if same_cols >= same_rows else 'col'
else:
row_cnt, col_cnt = Counter(), Counter()
for e in regex_edges[pii_t_idx]:
row_cnt[e[0][0]] += 1
col_cnt[e[0][1]] += 1
orient[pii_t_idx] = 'row' if col_cnt.most_common(1)[0][1] >= row_cnt.most_common(1)[0][1] else 'col'
regex_edges = {pii_t_idx: regex_edges[pii_t_idx] for pii_t_idx in orient.keys()}
for pii_t_idx in regex_edges.keys():
if orient[pii_t_idx] == 'row':
regex_edges[pii_t_idx] = [e for e in regex_edges[pii_t_idx] if e[0][1] == e[1][1]]
else:
regex_edges[pii_t_idx] = [e for e in regex_edges[pii_t_idx] if e[0][0] == e[1][0]]
row_labels, col_labels = dict(), dict()
for pii_t_idx in regex_edges.keys():
srcs = [e[0] for e in regex_edges[pii_t_idx]]
rows, cols = set([x[0] for x in srcs]), set([x[1] for x in srcs])
r, c = train_data_dict[pii_t_idx]['num_rows'], train_data_dict[pii_t_idx]['num_cols']
row_labels[pii_t_idx], col_labels[pii_t_idx] = [0] * r, [0] * c
if len(rows) == 0 and len(cols) == 0: continue
if len(rows) == 1 and len(cols) == 1:
src = regex_edges[pii_t_idx][0][0]
if orient[pii_t_idx] == 'row':
row_labels[pii_t_idx][src[0]] = 1
col_labels[pii_t_idx][src[1]] = 2
else:
row_labels[pii_t_idx][src[0]] = 2
col_labels[pii_t_idx][src[1]] = 1
elif len(cols) == 1:
for src, _ in regex_edges[pii_t_idx]:
row_labels[pii_t_idx][src[0]] = 1
col_labels[pii_t_idx][src[1]] = 2
elif len(rows) == 1:
for src, _ in regex_edges[pii_t_idx]:
row_labels[pii_t_idx][src[0]] = 2
col_labels[pii_t_idx][src[1]] = 1
else:
dst_cnt = Counter()
for src, dst in regex_edges[pii_t_idx]:
if src != dst:
dst_cnt[dst] += 1
regex_edges[pii_t_idx] = [e for e in regex_edges[pii_t_idx] if e[0] == e[1] or dst_cnt[e[1]] > 1]
if len(regex_edges[pii_t_idx]) == 1: regex_edges[pii_t_idx] = []
if orient[pii_t_idx] == 'row':
for src, _ in regex_edges[pii_t_idx]:
row_labels[pii_t_idx][src[0]] = 1
col_labels[pii_t_idx][src[1]] = 2
else:
for src, _ in regex_edges[pii_t_idx]:
row_labels[pii_t_idx][src[0]] = 2
col_labels[pii_t_idx][src[1]] = 1
for pii_t_idx in regex_edges.keys():
if len(regex_edges[pii_t_idx]) > 0:
assert sum(row_labels[pii_t_idx] + col_labels[pii_t_idx]) > 0
train_data = pickle.load(open(os.path.join(table_dir, 'train_data_mcc_ci.pkl'), 'rb'))
train_data_dict = {(c['pii'], c['t_idx']): c for c in train_data}
for pii_t_idx in regex_edges.keys():
if len(regex_edges[pii_t_idx]) == 0: continue
c = train_data_dict[pii_t_idx]
c['comp_table'] = True
c['sum_less_100'] = 1
c['row_label'], c['col_label'] = row_labels[pii_t_idx], col_labels[pii_t_idx]
c['edge_list'] = []
for src, dst in regex_edges[pii_t_idx]:
c['edge_list'].append((src[0] * c['num_cols'] + src[1], dst[0] * c['num_cols'] + dst[1]))
pickle.dump(train_data, open(os.path.join(table_dir, 'train_data_mcc_pi.pkl'), 'wb'))
|