File size: 2,274 Bytes
965298a
 
e282d16
 
 
 
 
 
 
965298a
e282d16
 
 
 
87c7fd8
 
 
 
 
 
e282d16
 
 
9658a2a
 
 
 
 
 
 
e282d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9658a2a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: apache-2.0
datasets:
- AyoubChLin/CNN_News_Articles_2011-2022
language:
- en
metrics:
- accuracy
pipeline_tag: text-classification
---
# BertForSequenceClassification on CNN News Dataset

This repository contains a fine-tuned Bert base model for sequence classification on the CNN News dataset. The model is able to classify news articles into one of six categories: business, entertainment, health, news, politics, and sport.

The model was fine-tuned for four epochs achieving a training loss of 0.077900, a validation loss of 0.190814

 - accuracy : 0.956690.
 - f1 : 0.956144.
 - precision : 0.956393
 - recall : 0.956690

## Model Description


- **Developed by:** [CHERGUELAINE Ayoub](https://www.linkedin.com/in/ayoub-cherguelaine/)
- **Shared by :** HuggingFace
- **Model type:** Language model
- **Language(s) (NLP):** en
- **Finetuned from model :** [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased)


## Usage

You can use this model with the Hugging Face Transformers library for a variety of natural language processing tasks, such as text classification, sentiment analysis, and more.

Here's an example of how to use this model for text classification in Python:

```python
from transformers import AutoTokenizer, BertForSequenceClassification

model_name = "AyoubChLin/bert_cnn_news"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = TFAutoModelForSequenceClassification.from_pretrained(model_name)

text = "This is a news article about politics."
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="tf")

outputs = model(inputs)
predicted_class_id = tf.argmax(outputs.logits, axis=-1).numpy()[0]

labels = ["business", "entertainment", "health", "news", "politics", "sport"]
predicted_label = labels[predicted_class_id]
```

In this example, we first load the tokenizer and the model using their respective `from_pretrained` methods. We then encode a news article using the tokenizer, pass the inputs through the model, and extract the predicted label using the `argmax` function. Finally, we map the predicted label to its corresponding category using a list of labels.

## Contributors

This model was fine-tuned by [CHERGUELAINE Ayoub](https://www.linkedin.com/in/ayoub-cherguelaine/).