File size: 2,358 Bytes
869952e ab0aff8 869952e ab0aff8 c31fd05 ab0aff8 c31fd05 ab0aff8 6bc7611 ab0aff8 6bc7611 ab0aff8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: apache-2.0
datasets:
- AyoubChLin/CNN_News_Articles_2011-2022
language:
- en
metrics:
- f1
- accuracy
pipeline_tag: zero-shot-classification
tags:
- zero shot
- text classification
- news classification
---
# Huggingface Model: BART-MNLI-ZeroShot-Text-Classification
This is a Huggingface model fine-tuned on the CNN news dataset for zero-shot text classification task using BART-MNLI. The model achieved an f1 score of 94% and an accuracy of 94% on the CNN test dataset with a maximum length of 128 tokens.
## Authors
This work was done by [CHERGUELAINE Ayoub](https://www.linkedin.com/in/ayoub-cherguelaine/) & [BOUBEKRI Faycal](https://www.linkedin.com/in/faycal-boubekri-832848199/)
## Original Model
[facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli)
## Model Architecture
The BART-Large-MNLI model has 12 transformer layers, a hidden size of 1024, and 406 million parameters. It is pre-trained on the English Wikipedia and BookCorpus datasets, and fine-tuned on the Multi-Genre Natural Language Inference (MNLI) task.
## Dataset
The CNN news dataset was used for fine-tuning the model. This dataset contains news articles from the CNN website and is labeled into 6 categories, including politics, health, entertainment, tech, travel, world, and sports.
## Fine-tuning Parameters
The model was fine-tuned for 1 epoch on a maximum length of 256 tokens. The training took approximately 6 hours to complete.
## Evaluation Metrics
The model achieved an f1 score of 94% and an accuracy of 94% on the CNN test dataset with a maximum length of 128 tokens.
# Usage
The model can be used for zero-shot text classification tasks on news articles. It can be accessed via the Huggingface Transformers library using the following code:
```python
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("AyoubChLin/Bart-MNLI-CNN_news")
model = AutoModelForSequenceClassification.from_pretrained("AyoubChLin/Bart-MNLI-CNN_news")
classifier = pipeline(
"zero-shot-classification",
model=model,
tokenizer=tokenizer,
device=0
)
```
## Acknowledgments
We would like to acknowledge the Huggingface team for their open-source implementation of transformer models and the CNN news dataset for providing the labeled dataset for fine-tuning. |