File size: 4,879 Bytes
a3d6c18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""
Source url: https://github.com/OPHoperHPO/image-background-remove-tool
Author: Nikita Selin (OPHoperHPO)[https://github.com/OPHoperHPO].
License: Apache License 2.0
"""
import pathlib
from typing import List, Union

import PIL.Image
import torch
from PIL import Image
from torchvision import transforms
from torchvision.models.segmentation import deeplabv3_resnet101
from carvekit.ml.files.models_loc import deeplab_pretrained
from carvekit.utils.image_utils import convert_image, load_image
from carvekit.utils.models_utils import get_precision_autocast, cast_network
from carvekit.utils.pool_utils import batch_generator, thread_pool_processing

__all__ = ["DeepLabV3"]


class DeepLabV3:
    def __init__(
        self,
        device="cpu",
        batch_size: int = 10,
        input_image_size: Union[List[int], int] = 1024,
        load_pretrained: bool = True,
        fp16: bool = False,
    ):
        """
        Initialize the DeepLabV3 model

        Args:
            device: processing device
            input_image_size: input image size
            batch_size: the number of images that the neural network processes in one run
            load_pretrained: loading pretrained model
            fp16: use half precision

        """
        self.device = device
        self.batch_size = batch_size
        self.network = deeplabv3_resnet101(
            pretrained=False, pretrained_backbone=False, aux_loss=True
        )
        self.network.to(self.device)
        if load_pretrained:
            self.network.load_state_dict(
                torch.load(deeplab_pretrained(), map_location=self.device)
            )
        if isinstance(input_image_size, list):
            self.input_image_size = input_image_size[:2]
        else:
            self.input_image_size = (input_image_size, input_image_size)
        self.network.eval()
        self.fp16 = fp16
        self.transform = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize(
                    mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
                ),
            ]
        )

    def to(self, device: str):
        """
        Moves neural network to specified processing device

        Args:
            device (:class:`torch.device`): the desired device.
        Returns:
            None

        """
        self.network.to(device)

    def data_preprocessing(self, data: PIL.Image.Image) -> torch.Tensor:
        """
        Transform input image to suitable data format for neural network

        Args:
            data: input image

        Returns:
            input for neural network

        """
        copy = data.copy()
        copy.thumbnail(self.input_image_size, resample=3)
        return self.transform(copy)

    @staticmethod
    def data_postprocessing(
        data: torch.tensor, original_image: PIL.Image.Image
    ) -> PIL.Image.Image:
        """
        Transforms output data from neural network to suitable data
        format for using with other components of this framework.

        Args:
            data: output data from neural network
            original_image: input image which was used for predicted data

        Returns:
            Segmentation mask as PIL Image instance

        """
        return (
            Image.fromarray(data.numpy() * 255).convert("L").resize(original_image.size)
        )

    def __call__(
        self, images: List[Union[str, pathlib.Path, PIL.Image.Image]]
    ) -> List[PIL.Image.Image]:
        """
        Passes input images though neural network and returns segmentation masks as PIL.Image.Image instances

        Args:
            images: input images

        Returns:
            segmentation masks as for input images, as PIL.Image.Image instances

        """
        collect_masks = []
        autocast, dtype = get_precision_autocast(device=self.device, fp16=self.fp16)
        with autocast:
            cast_network(self.network, dtype)
            for image_batch in batch_generator(images, self.batch_size):
                images = thread_pool_processing(
                    lambda x: convert_image(load_image(x)), image_batch
                )
                batches = thread_pool_processing(self.data_preprocessing, images)
                with torch.no_grad():
                    masks = [
                        self.network(i.to(self.device).unsqueeze(0))["out"][0]
                        .argmax(0)
                        .byte()
                        .cpu()
                        for i in batches
                    ]
                    del batches
                masks = thread_pool_processing(
                    lambda x: self.data_postprocessing(masks[x], images[x]),
                    range(len(images)),
                )
                collect_masks += masks
        return collect_masks