File size: 7,087 Bytes
19b3da3
 
 
 
 
 
ae524a9
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
b71808f
 
19b3da3
b71808f
 
 
19b3da3
 
 
 
b71808f
 
19b3da3
ae524a9
22df957
 
 
b71808f
 
19b3da3
ae524a9
19b3da3
ae524a9
 
 
 
 
 
 
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae524a9
19b3da3
 
 
 
 
 
 
 
 
 
 
 
ae524a9
 
19b3da3
 
 
ae524a9
19b3da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae524a9
19b3da3
ae524a9
19b3da3
 
 
 
ae524a9
19b3da3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from re import L

import cv2
import numpy as np
import torch
import torch.nn as nn
from scipy.ndimage.filters import gaussian_filter
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel

from internals.pipelines.commons import AbstractPipeline
from internals.util.config import get_nsfw_access, get_nsfw_threshold


def cosine_distance(image_embeds, text_embeds):
    normalized_image_embeds = nn.functional.normalize(image_embeds)
    normalized_text_embeds = nn.functional.normalize(text_embeds)
    return torch.mm(normalized_image_embeds, normalized_text_embeds.t())


class SafetyChecker:
    __loaded = False

    def load(self):
        if self.__loaded:
            return

        self.model = StableDiffusionSafetyCheckerV2.from_pretrained(
            "CompVis/stable-diffusion-safety-checker", torch_dtype=torch.float16
        ).to("cuda")

        self.__loaded = True

    def apply(self, pipeline: AbstractPipeline):
        model = self.model if not get_nsfw_access() else None
        if model:
            self.load()

        if not pipeline:
            return
        if hasattr(pipeline, "pipe"):
            pipeline.pipe.safety_checker = model
        if hasattr(pipeline, "pipe2"):
            pipeline.pipe2.safety_checker = model


def cosine_distance(image_embeds, text_embeds):
    normalized_image_embeds = nn.functional.normalize(image_embeds)
    normalized_text_embeds = nn.functional.normalize(text_embeds)
    return torch.mm(normalized_image_embeds, normalized_text_embeds.t())


class StableDiffusionSafetyCheckerV2(PreTrainedModel):
    config_class = CLIPConfig

    _no_split_modules = ["CLIPEncoderLayer"]

    def __init__(self, config: CLIPConfig):
        super().__init__(config)

        self.vision_model = CLIPVisionModel(config.vision_config)
        self.visual_projection = nn.Linear(
            config.vision_config.hidden_size, config.projection_dim, bias=False
        )

        self.concept_embeds = nn.Parameter(
            torch.ones(17, config.projection_dim), requires_grad=False
        )
        self.special_care_embeds = nn.Parameter(
            torch.ones(3, config.projection_dim), requires_grad=False
        )

        self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False)
        self.special_care_embeds_weights = nn.Parameter(
            torch.ones(3), requires_grad=False
        )

    @torch.no_grad()
    def forward(self, clip_input, images):
        pooled_output = self.vision_model(clip_input)[1]  # pooled_output
        image_embeds = self.visual_projection(pooled_output)

        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        special_cos_dist = (
            cosine_distance(image_embeds, self.special_care_embeds)
            .cpu()
            .float()
            .numpy()
        )
        cos_dist = (
            cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
        )

        result = []
        batch_size = image_embeds.shape[0]
        for i in range(batch_size):
            result_img = {
                "special_scores": {},
                "special_care": [],
                "concept_scores": {},
                "bad_concepts": [],
            }

            # increase this value to create a stronger `nfsw` filter
            # at the cost of increasing the possibility of filtering benign images
            adjustment = 0.0

            for concept_idx in range(len(special_cos_dist[0])):
                concept_cos = special_cos_dist[i][concept_idx]
                concept_threshold = self.special_care_embeds_weights[concept_idx].item()
                result_img["special_scores"][concept_idx] = round(
                    concept_cos - concept_threshold + adjustment, 3
                )
                if result_img["special_scores"][concept_idx] > 0:
                    result_img["special_care"].append(
                        {concept_idx, result_img["special_scores"][concept_idx]}
                    )
                    adjustment = 0.01

            for concept_idx in range(len(cos_dist[0])):
                concept_cos = cos_dist[i][concept_idx]
                concept_threshold = self.concept_embeds_weights[concept_idx].item()
                result_img["concept_scores"][concept_idx] = round(
                    concept_cos - concept_threshold + adjustment, 3
                )
                if result_img["concept_scores"][concept_idx] > 0:
                    result_img["bad_concepts"].append(concept_idx)

            result.append(result_img)

        has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]

        # Blur images based on NSFW score
        # -------------------------------
        for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
            if any(has_nsfw_concepts) and not get_nsfw_access():
                if torch.is_tensor(images) or torch.is_tensor(images[0]):
                    image = images[idx].cpu().numpy().astype(np.float32)
                    image = gaussian_filter(image, sigma=7)
                    # image = cv2.blur(image, (30, 30))
                    image = torch.from_numpy(image)
                    images[idx] = image
                else:
                    images[idx] = gaussian_filter(images[idx], sigma=7)

        if any(has_nsfw_concepts):
            print("NSFW")

        return images, has_nsfw_concepts

    @torch.no_grad()
    def forward_onnx(self, clip_input: torch.FloatTensor, images: torch.FloatTensor):
        pooled_output = self.vision_model(clip_input)[1]  # pooled_output
        image_embeds = self.visual_projection(pooled_output)

        special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
        cos_dist = cosine_distance(image_embeds, self.concept_embeds)

        # increase this value to create a stronger `nsfw` filter
        # at the cost of increasing the possibility of filtering benign images
        adjustment = 0.0

        special_scores = (
            special_cos_dist - self.special_care_embeds_weights + adjustment
        )
        # special_scores = special_scores.round(decimals=3)
        special_care = torch.any(special_scores > 0, dim=1)
        special_adjustment = special_care * 0.01
        special_adjustment = special_adjustment.unsqueeze(1).expand(
            -1, cos_dist.shape[1]
        )

        concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
        # concept_scores = concept_scores.round(decimals=3)
        has_nsfw_concepts = torch.any(concept_scores > 0, dim=1)

        # images[has_nsfw_concepts] = 0.0  # black image
        # Blur images based on NSFW score
        # -------------------------------
        if not get_nsfw_access():
            image = images[has_nsfw_concepts].cpu().numpy().astype(np.float32)
            image = gaussian_filter(image, sigma=7)
            image = torch.from_numpy(image)
            images[has_nsfw_concepts] = image

        return images, has_nsfw_concepts