File size: 2,195 Bytes
81f4a14
 
 
 
 
 
 
 
 
 
 
b321433
81f4a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1bff14
81f4a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b321433
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-large-xls-r-300m-dm32
  results: []
pipeline_tag: audio-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-dm32

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4880
- Accuracy: 0.7917

## Model description

More information needed

## Intended uses & limitations

Used for detecting Alzheimer's disease given voice samples

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 22
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| No log        | 2.3448  | 34   | 0.6847          | 0.5833   |
| No log        | 4.6897  | 68   | 0.6828          | 0.5833   |
| No log        | 7.0345  | 102  | 0.6775          | 0.5833   |
| 0.3495        | 9.3793  | 136  | 0.6757          | 0.5833   |
| 0.3495        | 11.7241 | 170  | 0.6739          | 0.5833   |
| 0.3495        | 14.0690 | 204  | 0.6081          | 0.6875   |
| 0.3335        | 16.4138 | 238  | 0.5084          | 0.7917   |
| 0.3335        | 18.7586 | 272  | 0.4868          | 0.8125   |
| 0.3335        | 21.1034 | 306  | 0.4880          | 0.7917   |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3