Augusto777's picture
End of training
3e4362d verified
|
raw
history blame
3.87 kB
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-dmae-va-U5-42B
    results: []

swinv2-tiny-patch4-window8-256-dmae-va-U5-42B

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0633
  • Accuracy: 0.6333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 42

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9 7 7.8663 0.1167
6.936 1.94 15 7.7572 0.1167
6.936 2.97 23 7.1789 0.1167
6.7016 4.0 31 5.9142 0.1167
5.5418 4.9 38 4.6065 0.1167
5.5418 5.94 46 3.2783 0.1167
3.6439 6.97 54 2.1984 0.1167
2.2477 8.0 62 1.5631 0.45
2.2477 8.9 69 1.3158 0.45
1.5076 9.94 77 1.3665 0.3333
1.3865 10.97 85 1.3561 0.35
1.3865 12.0 93 1.2673 0.4667
1.3436 12.9 100 1.5020 0.2833
1.3187 13.94 108 1.3018 0.4667
1.3187 14.97 116 1.2582 0.4833
1.2132 16.0 124 1.2250 0.5
1.2132 16.9 131 1.2071 0.5167
1.2041 17.94 139 1.1806 0.5167
1.1756 18.97 147 1.1720 0.55
1.1756 20.0 155 1.1319 0.5333
1.1107 20.9 162 1.0851 0.5833
1.0651 21.94 170 1.0554 0.5833
1.0651 22.97 178 1.0580 0.5
1.0419 24.0 186 1.1471 0.5833
0.9804 24.9 193 1.0633 0.6333
0.9804 25.94 201 1.0597 0.5833
0.9195 26.97 209 0.9563 0.6333
0.9053 28.0 217 0.9839 0.5167
0.9053 28.9 224 0.9914 0.5167
0.8645 29.94 232 0.9520 0.5833
0.8139 30.97 240 0.9573 0.5333
0.8139 32.0 248 0.9510 0.5167
0.8151 32.9 255 0.9469 0.5167
0.8151 33.94 263 0.9872 0.5333
0.7837 34.97 271 0.9279 0.5833
0.7659 36.0 279 0.9174 0.5667
0.7659 36.9 286 0.9347 0.5667
0.7835 37.94 294 0.9372 0.5667

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0