metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: beit-base-patch16-224-dmae-va-U5-42
results: []
beit-base-patch16-224-dmae-va-U5-42
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0039
- Accuracy: 0.8167
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 42
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.9 | 7 | 1.3471 | 0.4667 |
1.6023 | 1.94 | 15 | 1.0873 | 0.5833 |
1.1509 | 2.97 | 23 | 0.9948 | 0.5833 |
0.826 | 4.0 | 31 | 0.7244 | 0.7167 |
0.826 | 4.9 | 38 | 0.5741 | 0.7333 |
0.5551 | 5.94 | 46 | 0.6569 | 0.75 |
0.3649 | 6.97 | 54 | 0.6322 | 0.7167 |
0.2592 | 8.0 | 62 | 0.6994 | 0.7333 |
0.2592 | 8.9 | 69 | 0.6590 | 0.7333 |
0.1958 | 9.94 | 77 | 0.6846 | 0.7667 |
0.1664 | 10.97 | 85 | 0.7166 | 0.7667 |
0.1571 | 12.0 | 93 | 0.7842 | 0.7833 |
0.1174 | 12.9 | 100 | 0.8465 | 0.8 |
0.1174 | 13.94 | 108 | 0.9116 | 0.7667 |
0.0956 | 14.97 | 116 | 0.9741 | 0.75 |
0.1252 | 16.0 | 124 | 0.7760 | 0.8 |
0.0933 | 16.9 | 131 | 0.9424 | 0.7833 |
0.0933 | 17.94 | 139 | 1.0445 | 0.7333 |
0.1455 | 18.97 | 147 | 0.8525 | 0.7333 |
0.1034 | 20.0 | 155 | 0.8222 | 0.7667 |
0.0855 | 20.9 | 162 | 0.8991 | 0.7833 |
0.0985 | 21.94 | 170 | 0.8955 | 0.8 |
0.0985 | 22.97 | 178 | 0.9603 | 0.7667 |
0.087 | 24.0 | 186 | 0.9932 | 0.7833 |
0.0832 | 24.9 | 193 | 1.0100 | 0.7833 |
0.0632 | 25.94 | 201 | 0.9393 | 0.7667 |
0.0632 | 26.97 | 209 | 0.9062 | 0.7833 |
0.0778 | 28.0 | 217 | 0.9339 | 0.8 |
0.0627 | 28.9 | 224 | 1.0039 | 0.8167 |
0.0837 | 29.94 | 232 | 1.0636 | 0.7333 |
0.0595 | 30.97 | 240 | 1.0424 | 0.75 |
0.0595 | 32.0 | 248 | 1.0514 | 0.8 |
0.0706 | 32.9 | 255 | 1.0639 | 0.7833 |
0.0565 | 33.94 | 263 | 1.0494 | 0.7667 |
0.0515 | 34.97 | 271 | 1.0628 | 0.7667 |
0.0515 | 36.0 | 279 | 1.1089 | 0.7667 |
0.0614 | 36.9 | 286 | 1.0861 | 0.8 |
0.0496 | 37.94 | 294 | 1.0713 | 0.8 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2