File size: 2,219 Bytes
f3c1bff 9f12e98 f3c1bff 9f12e98 f3c1bff 9f12e98 f3c1bff 9f12e98 f3c1bff bf412f8 f3c1bff 9f12e98 f3c1bff 9f12e98 f3c1bff 9f12e98 f3c1bff 9f12e98 f3c1bff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
language:
- gl
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: "Whisper Small GL - Santiago Param\xE9s-Est\xE9vez"
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: gl
split: test
args: 'config: gl, split: test'
metrics:
- name: Wer
type: wer
value: 15.233405065386526
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small GL - Santiago Paramés-Estévez
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3179
- Wer: 15.2334
## Model description
This model was fine-tuned using Sanchit Gandhi's notebook: https://huggingface.co/blog/fine-tune-whisper
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0707 | 2.69 | 1000 | 0.2596 | 16.4915 |
| 0.0063 | 5.38 | 2000 | 0.2952 | 15.8583 |
| 0.0014 | 8.06 | 3000 | 0.3105 | 15.2624 |
| 0.0011 | 10.75 | 4000 | 0.3179 | 15.2334 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|