results / README.md
AswanthCManoj's picture
azma-phi-2-instruct-structured
24a5852 verified
|
raw
history blame
2.54 kB
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
base_model: microsoft/phi-2
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of microsoft/phi-2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8902

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • lr_scheduler_warmup_steps: 150
  • num_epochs: 0.5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.7893 0.04 25 0.9209
0.7162 0.07 50 0.9266
0.9178 0.11 75 0.8747
0.7546 0.14 100 0.8973
0.8387 0.18 125 0.8814
0.7346 0.21 150 0.8926
0.8609 0.25 175 0.8971
0.7118 0.29 200 0.8833
0.8248 0.32 225 0.8747
0.6511 0.36 250 0.8852
0.9178 0.39 275 0.8744
0.6139 0.43 300 0.8885
0.8795 0.46 325 0.8802
0.5775 0.5 350 0.8902

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.15.1

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Framework versions

  • PEFT 0.6.2