azma-phi-2-instruct-structured
Browse files
README.md
CHANGED
@@ -1,11 +1,9 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
library_name: peft
|
4 |
tags:
|
5 |
-
- trl
|
6 |
-
- sft
|
7 |
- generated_from_trainer
|
8 |
-
base_model:
|
9 |
model-index:
|
10 |
- name: results
|
11 |
results: []
|
@@ -16,9 +14,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
# results
|
18 |
|
19 |
-
This model is a fine-tuned version of [
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
|
23 |
## Model description
|
24 |
|
@@ -37,36 +35,45 @@ More information needed
|
|
37 |
### Training hyperparameters
|
38 |
|
39 |
The following hyperparameters were used during training:
|
40 |
-
- learning_rate:
|
41 |
-
- train_batch_size:
|
42 |
-
- eval_batch_size:
|
43 |
- seed: 42
|
44 |
-
- gradient_accumulation_steps:
|
45 |
- total_train_batch_size: 8
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
-
- lr_scheduler_type:
|
48 |
- lr_scheduler_warmup_ratio: 0.03
|
49 |
-
- lr_scheduler_warmup_steps:
|
50 |
-
- num_epochs:
|
51 |
- mixed_precision_training: Native AMP
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|
|
57 |
-
|
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
|
64 |
### Framework versions
|
65 |
|
66 |
- Transformers 4.36.2
|
67 |
- Pytorch 2.1.0+cu121
|
68 |
-
- Datasets 2.
|
69 |
-
- Tokenizers 0.15.
|
70 |
## Training procedure
|
71 |
|
72 |
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
library_name: peft
|
4 |
tags:
|
|
|
|
|
5 |
- generated_from_trainer
|
6 |
+
base_model: microsoft/phi-2
|
7 |
model-index:
|
8 |
- name: results
|
9 |
results: []
|
|
|
14 |
|
15 |
# results
|
16 |
|
17 |
+
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.8902
|
20 |
|
21 |
## Model description
|
22 |
|
|
|
35 |
### Training hyperparameters
|
36 |
|
37 |
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0002
|
39 |
+
- train_batch_size: 4
|
40 |
+
- eval_batch_size: 4
|
41 |
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 2
|
43 |
- total_train_batch_size: 8
|
44 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: constant
|
46 |
- lr_scheduler_warmup_ratio: 0.03
|
47 |
+
- lr_scheduler_warmup_steps: 150
|
48 |
+
- num_epochs: 0.5
|
49 |
- mixed_precision_training: Native AMP
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|
|
55 |
+
| 0.7893 | 0.04 | 25 | 0.9209 |
|
56 |
+
| 0.7162 | 0.07 | 50 | 0.9266 |
|
57 |
+
| 0.9178 | 0.11 | 75 | 0.8747 |
|
58 |
+
| 0.7546 | 0.14 | 100 | 0.8973 |
|
59 |
+
| 0.8387 | 0.18 | 125 | 0.8814 |
|
60 |
+
| 0.7346 | 0.21 | 150 | 0.8926 |
|
61 |
+
| 0.8609 | 0.25 | 175 | 0.8971 |
|
62 |
+
| 0.7118 | 0.29 | 200 | 0.8833 |
|
63 |
+
| 0.8248 | 0.32 | 225 | 0.8747 |
|
64 |
+
| 0.6511 | 0.36 | 250 | 0.8852 |
|
65 |
+
| 0.9178 | 0.39 | 275 | 0.8744 |
|
66 |
+
| 0.6139 | 0.43 | 300 | 0.8885 |
|
67 |
+
| 0.8795 | 0.46 | 325 | 0.8802 |
|
68 |
+
| 0.5775 | 0.5 | 350 | 0.8902 |
|
69 |
|
70 |
|
71 |
### Framework versions
|
72 |
|
73 |
- Transformers 4.36.2
|
74 |
- Pytorch 2.1.0+cu121
|
75 |
+
- Datasets 2.14.6
|
76 |
+
- Tokenizers 0.15.1
|
77 |
## Training procedure
|
78 |
|
79 |
|