research4pan commited on
Commit
7d2f249
1 Parent(s): 45cc4fa

Add astrollama-70b-chat

Browse files
README.md CHANGED
@@ -1,3 +1,58 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: output_models/abot-70b_epoch-1
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - customized
7
+ model-index:
8
+ - name: abot-70b_chat
9
+ results: []
10
  ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # abot-70b_chat
16
+
17
+ This model is a fine-tuned version of [output_models/abot-70b_epoch-1](https://huggingface.co/output_models/abot-70b_epoch-1) on the customized dataset.
18
+
19
+ ## Model description
20
+
21
+ More information needed
22
+
23
+ ## Intended uses & limitations
24
+
25
+ More information needed
26
+
27
+ ## Training and evaluation data
28
+
29
+ More information needed
30
+
31
+ ## Training procedure
32
+
33
+ ### Training hyperparameters
34
+
35
+ The following hyperparameters were used during training:
36
+ - learning_rate: 2e-05
37
+ - train_batch_size: 6
38
+ - eval_batch_size: 1
39
+ - seed: 42
40
+ - distributed_type: multi-GPU
41
+ - num_devices: 8
42
+ - total_train_batch_size: 48
43
+ - total_eval_batch_size: 8
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: cosine
46
+ - lr_scheduler_warmup_ratio: 0.03
47
+ - num_epochs: 1.0
48
+
49
+ ### Training results
50
+
51
+
52
+
53
+ ### Framework versions
54
+
55
+ - Transformers 4.33.3
56
+ - Pytorch 2.1.2+cu121
57
+ - Datasets 2.14.6
58
+ - Tokenizers 0.13.3
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 1.008456783521743,
4
+ "train_runtime": 75047.9043,
5
+ "train_samples": 25188,
6
+ "train_samples_per_second": 0.336,
7
+ "train_steps_per_second": 0.007
8
+ }
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "output_models/abot-70b_epoch-1",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 8192,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 28672,
12
+ "max_position_embeddings": 4096,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 64,
15
+ "num_hidden_layers": 80,
16
+ "num_key_value_heads": 8,
17
+ "pretraining_tp": 1,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_scaling": null,
20
+ "rope_theta": 10000.0,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.33.3",
24
+ "use_cache": false,
25
+ "vocab_size": 32000
26
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.33.3"
10
+ }
pytorch_model-00001-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5db29118ac14cce79617b06fc19e15f0126024235e6bb22c994f113fbf8e171
3
+ size 9852601804
pytorch_model-00002-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b4eeb1b288020206677d3f450d543ee7e2aeae3026ca095a2573ac13fceb599
3
+ size 9798109380
pytorch_model-00003-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a815856abfb77884ef6594a8f9ea607e23cc7747930021266c78031c2edb874
3
+ size 9965880502
pytorch_model-00004-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b60f72779360b00b42f11f1be04827fd969c7254fc8f6c2939636b8994589d37
3
+ size 9798075916
pytorch_model-00005-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1d0571830855a2394f4b3658aec75bf294db26c10ab3b31390a6717fe965be6
3
+ size 9798109360
pytorch_model-00006-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d039cbb94c03f0d5837e99fd5dd0184cbc93f422d1389b45cea93788f59b5c8
3
+ size 9798109444
pytorch_model-00007-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e9a91fc35b50d6c540092a11cecf511c88e0f991aa93b57035f4dbbed25129c
3
+ size 9965880502
pytorch_model-00008-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf74bd5388ad2f1bf45b8b53f58eb95f32b8e2288c2350f005eed8260f1aa9c7
3
+ size 9798075916
pytorch_model-00009-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8a2781df5adff73ce32d631d7c663c8ce9e3f10a537b7e8c37b76464dcdc640
3
+ size 9798109360
pytorch_model-00010-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b87cf99609db80ca0353503455379d8bdd798dd7fd2582641a62dc35ae736a6f
3
+ size 9798109444
pytorch_model-00011-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f58378d3e31f25ad59f4151e464202b6d16dcaf45e0ed779561c767c03859a6a
3
+ size 9965880502
pytorch_model-00012-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fca98344147d919b25827281190e899dfe784c36b73ddef38431e50e08662de
3
+ size 9798075916
pytorch_model-00013-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c368feca8fcd043a0c2675fddc9e0d43d2209f8acf9d5811cd7706f1dc5ec22d
3
+ size 9798109360
pytorch_model-00014-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25dda728bf69b80a51c0aad413158ffb1667ddbd6f78d2a776145d6550f08a3b
3
+ size 9496134826
pytorch_model-00015-of-00015.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4ae02d41617cb006a3dc46adb077577e6018e9a9759d6fefaaf1a871c7b6c6d
3
+ size 524289413
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,730 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 137953296384
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00015-of-00015.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00015.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00015.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00015.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00015.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00015.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00015.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00015.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00015.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00015.bin",
16
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00015.bin",
17
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00015.bin",
18
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00015.bin",
19
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00015.bin",
20
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00015.bin",
21
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00015.bin",
22
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00015.bin",
23
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00015.bin",
24
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00015.bin",
25
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00015.bin",
26
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00015.bin",
27
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00015.bin",
28
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00015.bin",
29
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00015.bin",
30
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00015.bin",
31
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00015.bin",
32
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00015.bin",
33
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00015.bin",
34
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00015.bin",
35
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00003-of-00015.bin",
36
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00003-of-00015.bin",
37
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00003-of-00015.bin",
38
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00003-of-00015.bin",
39
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00003-of-00015.bin",
40
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00015.bin",
41
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00015.bin",
42
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00015.bin",
43
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00015.bin",
44
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00003-of-00015.bin",
45
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00003-of-00015.bin",
46
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00003-of-00015.bin",
47
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00003-of-00015.bin",
48
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00003-of-00015.bin",
49
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00003-of-00015.bin",
50
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00003-of-00015.bin",
51
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00003-of-00015.bin",
52
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00003-of-00015.bin",
53
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00003-of-00015.bin",
54
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00003-of-00015.bin",
55
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00003-of-00015.bin",
56
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00003-of-00015.bin",
57
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00003-of-00015.bin",
58
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00003-of-00015.bin",
59
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00003-of-00015.bin",
60
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00003-of-00015.bin",
61
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00003-of-00015.bin",
62
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00003-of-00015.bin",
63
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00003-of-00015.bin",
64
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00003-of-00015.bin",
65
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00003-of-00015.bin",
66
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00003-of-00015.bin",
67
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00003-of-00015.bin",
68
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00003-of-00015.bin",
69
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00003-of-00015.bin",
70
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00003-of-00015.bin",
71
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00003-of-00015.bin",
72
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00003-of-00015.bin",
73
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00003-of-00015.bin",
74
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00003-of-00015.bin",
75
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00003-of-00015.bin",
76
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00003-of-00015.bin",
77
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00003-of-00015.bin",
78
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00003-of-00015.bin",
79
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00003-of-00015.bin",
80
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00003-of-00015.bin",
81
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00003-of-00015.bin",
82
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00003-of-00015.bin",
83
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00003-of-00015.bin",
84
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00003-of-00015.bin",
85
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00003-of-00015.bin",
86
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00003-of-00015.bin",
87
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00003-of-00015.bin",
88
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00003-of-00015.bin",
89
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00004-of-00015.bin",
90
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00004-of-00015.bin",
91
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00004-of-00015.bin",
92
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00004-of-00015.bin",
93
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00004-of-00015.bin",
94
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00004-of-00015.bin",
95
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00004-of-00015.bin",
96
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00004-of-00015.bin",
97
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00004-of-00015.bin",
98
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00004-of-00015.bin",
99
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00004-of-00015.bin",
100
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00004-of-00015.bin",
101
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00004-of-00015.bin",
102
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00004-of-00015.bin",
103
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00004-of-00015.bin",
104
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00004-of-00015.bin",
105
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00004-of-00015.bin",
106
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00004-of-00015.bin",
107
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00004-of-00015.bin",
108
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00004-of-00015.bin",
109
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00004-of-00015.bin",
110
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00004-of-00015.bin",
111
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00004-of-00015.bin",
112
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00004-of-00015.bin",
113
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00004-of-00015.bin",
114
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00004-of-00015.bin",
115
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00004-of-00015.bin",
116
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00015.bin",
117
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00015.bin",
118
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00015.bin",
119
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00015.bin",
120
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00015.bin",
121
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00015.bin",
122
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00015.bin",
123
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00015.bin",
124
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00015.bin",
125
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00004-of-00015.bin",
126
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00004-of-00015.bin",
127
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00004-of-00015.bin",
128
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00004-of-00015.bin",
129
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00004-of-00015.bin",
130
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00004-of-00015.bin",
131
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00004-of-00015.bin",
132
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00004-of-00015.bin",
133
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00004-of-00015.bin",
134
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00004-of-00015.bin",
135
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00004-of-00015.bin",
136
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00004-of-00015.bin",
137
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00004-of-00015.bin",
138
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00004-of-00015.bin",
139
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00004-of-00015.bin",
140
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00004-of-00015.bin",
141
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00004-of-00015.bin",
142
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00004-of-00015.bin",
143
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00005-of-00015.bin",
144
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00005-of-00015.bin",
145
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00004-of-00015.bin",
146
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00004-of-00015.bin",
147
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00005-of-00015.bin",
148
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00004-of-00015.bin",
149
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00004-of-00015.bin",
150
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00004-of-00015.bin",
151
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00004-of-00015.bin",
152
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00005-of-00015.bin",
153
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00005-of-00015.bin",
154
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00005-of-00015.bin",
155
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00005-of-00015.bin",
156
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00005-of-00015.bin",
157
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00005-of-00015.bin",
158
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00005-of-00015.bin",
159
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00005-of-00015.bin",
160
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00005-of-00015.bin",
161
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00005-of-00015.bin",
162
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00005-of-00015.bin",
163
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00005-of-00015.bin",
164
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00005-of-00015.bin",
165
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00005-of-00015.bin",
166
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00005-of-00015.bin",
167
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00005-of-00015.bin",
168
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00005-of-00015.bin",
169
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00005-of-00015.bin",
170
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00005-of-00015.bin",
171
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00005-of-00015.bin",
172
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00005-of-00015.bin",
173
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00005-of-00015.bin",
174
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00005-of-00015.bin",
175
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00005-of-00015.bin",
176
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00005-of-00015.bin",
177
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00005-of-00015.bin",
178
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00005-of-00015.bin",
179
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00005-of-00015.bin",
180
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00005-of-00015.bin",
181
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00005-of-00015.bin",
182
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00005-of-00015.bin",
183
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00005-of-00015.bin",
184
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00005-of-00015.bin",
185
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00005-of-00015.bin",
186
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00005-of-00015.bin",
187
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00005-of-00015.bin",
188
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00005-of-00015.bin",
189
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00005-of-00015.bin",
190
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00005-of-00015.bin",
191
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00005-of-00015.bin",
192
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00005-of-00015.bin",
193
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00005-of-00015.bin",
194
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00005-of-00015.bin",
195
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00005-of-00015.bin",
196
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00005-of-00015.bin",
197
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00006-of-00015.bin",
198
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00006-of-00015.bin",
199
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00005-of-00015.bin",
200
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00006-of-00015.bin",
201
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00006-of-00015.bin",
202
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00005-of-00015.bin",
203
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00005-of-00015.bin",
204
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00005-of-00015.bin",
205
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00005-of-00015.bin",
206
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00006-of-00015.bin",
207
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00006-of-00015.bin",
208
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00006-of-00015.bin",
209
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00006-of-00015.bin",
210
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00006-of-00015.bin",
211
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00006-of-00015.bin",
212
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00006-of-00015.bin",
213
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00006-of-00015.bin",
214
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00006-of-00015.bin",
215
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00015.bin",
216
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00015.bin",
217
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00015.bin",
218
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00015.bin",
219
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00015.bin",
220
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00015.bin",
221
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00015.bin",
222
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00015.bin",
223
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00015.bin",
224
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00006-of-00015.bin",
225
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00006-of-00015.bin",
226
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00006-of-00015.bin",
227
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00006-of-00015.bin",
228
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00006-of-00015.bin",
229
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00006-of-00015.bin",
230
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00006-of-00015.bin",
231
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00006-of-00015.bin",
232
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00006-of-00015.bin",
233
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00006-of-00015.bin",
234
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00006-of-00015.bin",
235
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00006-of-00015.bin",
236
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00006-of-00015.bin",
237
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00006-of-00015.bin",
238
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00006-of-00015.bin",
239
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00006-of-00015.bin",
240
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00006-of-00015.bin",
241
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00006-of-00015.bin",
242
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00006-of-00015.bin",
243
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00006-of-00015.bin",
244
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00006-of-00015.bin",
245
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00006-of-00015.bin",
246
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00006-of-00015.bin",
247
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00006-of-00015.bin",
248
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00006-of-00015.bin",
249
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00006-of-00015.bin",
250
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00006-of-00015.bin",
251
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00006-of-00015.bin",
252
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00006-of-00015.bin",
253
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00006-of-00015.bin",
254
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00006-of-00015.bin",
255
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00006-of-00015.bin",
256
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00006-of-00015.bin",
257
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00006-of-00015.bin",
258
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00006-of-00015.bin",
259
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00006-of-00015.bin",
260
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00007-of-00015.bin",
261
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00007-of-00015.bin",
262
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00007-of-00015.bin",
263
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00007-of-00015.bin",
264
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00007-of-00015.bin",
265
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00006-of-00015.bin",
266
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00006-of-00015.bin",
267
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00006-of-00015.bin",
268
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00006-of-00015.bin",
269
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00007-of-00015.bin",
270
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00007-of-00015.bin",
271
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00007-of-00015.bin",
272
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00007-of-00015.bin",
273
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00007-of-00015.bin",
274
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00007-of-00015.bin",
275
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00007-of-00015.bin",
276
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00007-of-00015.bin",
277
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00007-of-00015.bin",
278
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00007-of-00015.bin",
279
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00007-of-00015.bin",
280
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00007-of-00015.bin",
281
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00007-of-00015.bin",
282
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00007-of-00015.bin",
283
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00007-of-00015.bin",
284
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00007-of-00015.bin",
285
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00007-of-00015.bin",
286
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00007-of-00015.bin",
287
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00007-of-00015.bin",
288
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00007-of-00015.bin",
289
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00007-of-00015.bin",
290
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00007-of-00015.bin",
291
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00007-of-00015.bin",
292
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00007-of-00015.bin",
293
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00007-of-00015.bin",
294
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00007-of-00015.bin",
295
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00007-of-00015.bin",
296
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00007-of-00015.bin",
297
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00007-of-00015.bin",
298
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00007-of-00015.bin",
299
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00007-of-00015.bin",
300
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00007-of-00015.bin",
301
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00007-of-00015.bin",
302
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00007-of-00015.bin",
303
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00007-of-00015.bin",
304
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00007-of-00015.bin",
305
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00007-of-00015.bin",
306
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00007-of-00015.bin",
307
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00007-of-00015.bin",
308
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00007-of-00015.bin",
309
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00007-of-00015.bin",
310
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00007-of-00015.bin",
311
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00007-of-00015.bin",
312
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00007-of-00015.bin",
313
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00007-of-00015.bin",
314
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00015.bin",
315
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00015.bin",
316
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00015.bin",
317
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00015.bin",
318
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00015.bin",
319
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00015.bin",
320
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00015.bin",
321
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00015.bin",
322
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00015.bin",
323
+ "model.layers.40.input_layernorm.weight": "pytorch_model-00008-of-00015.bin",
324
+ "model.layers.40.mlp.down_proj.weight": "pytorch_model-00008-of-00015.bin",
325
+ "model.layers.40.mlp.gate_proj.weight": "pytorch_model-00008-of-00015.bin",
326
+ "model.layers.40.mlp.up_proj.weight": "pytorch_model-00008-of-00015.bin",
327
+ "model.layers.40.post_attention_layernorm.weight": "pytorch_model-00008-of-00015.bin",
328
+ "model.layers.40.self_attn.k_proj.weight": "pytorch_model-00008-of-00015.bin",
329
+ "model.layers.40.self_attn.o_proj.weight": "pytorch_model-00008-of-00015.bin",
330
+ "model.layers.40.self_attn.q_proj.weight": "pytorch_model-00008-of-00015.bin",
331
+ "model.layers.40.self_attn.v_proj.weight": "pytorch_model-00008-of-00015.bin",
332
+ "model.layers.41.input_layernorm.weight": "pytorch_model-00008-of-00015.bin",
333
+ "model.layers.41.mlp.down_proj.weight": "pytorch_model-00008-of-00015.bin",
334
+ "model.layers.41.mlp.gate_proj.weight": "pytorch_model-00008-of-00015.bin",
335
+ "model.layers.41.mlp.up_proj.weight": "pytorch_model-00008-of-00015.bin",
336
+ "model.layers.41.post_attention_layernorm.weight": "pytorch_model-00008-of-00015.bin",
337
+ "model.layers.41.self_attn.k_proj.weight": "pytorch_model-00008-of-00015.bin",
338
+ "model.layers.41.self_attn.o_proj.weight": "pytorch_model-00008-of-00015.bin",
339
+ "model.layers.41.self_attn.q_proj.weight": "pytorch_model-00008-of-00015.bin",
340
+ "model.layers.41.self_attn.v_proj.weight": "pytorch_model-00008-of-00015.bin",
341
+ "model.layers.42.input_layernorm.weight": "pytorch_model-00008-of-00015.bin",
342
+ "model.layers.42.mlp.down_proj.weight": "pytorch_model-00008-of-00015.bin",
343
+ "model.layers.42.mlp.gate_proj.weight": "pytorch_model-00008-of-00015.bin",
344
+ "model.layers.42.mlp.up_proj.weight": "pytorch_model-00008-of-00015.bin",
345
+ "model.layers.42.post_attention_layernorm.weight": "pytorch_model-00008-of-00015.bin",
346
+ "model.layers.42.self_attn.k_proj.weight": "pytorch_model-00008-of-00015.bin",
347
+ "model.layers.42.self_attn.o_proj.weight": "pytorch_model-00008-of-00015.bin",
348
+ "model.layers.42.self_attn.q_proj.weight": "pytorch_model-00008-of-00015.bin",
349
+ "model.layers.42.self_attn.v_proj.weight": "pytorch_model-00008-of-00015.bin",
350
+ "model.layers.43.input_layernorm.weight": "pytorch_model-00008-of-00015.bin",
351
+ "model.layers.43.mlp.down_proj.weight": "pytorch_model-00008-of-00015.bin",
352
+ "model.layers.43.mlp.gate_proj.weight": "pytorch_model-00008-of-00015.bin",
353
+ "model.layers.43.mlp.up_proj.weight": "pytorch_model-00008-of-00015.bin",
354
+ "model.layers.43.post_attention_layernorm.weight": "pytorch_model-00008-of-00015.bin",
355
+ "model.layers.43.self_attn.k_proj.weight": "pytorch_model-00008-of-00015.bin",
356
+ "model.layers.43.self_attn.o_proj.weight": "pytorch_model-00008-of-00015.bin",
357
+ "model.layers.43.self_attn.q_proj.weight": "pytorch_model-00008-of-00015.bin",
358
+ "model.layers.43.self_attn.v_proj.weight": "pytorch_model-00008-of-00015.bin",
359
+ "model.layers.44.input_layernorm.weight": "pytorch_model-00008-of-00015.bin",
360
+ "model.layers.44.mlp.down_proj.weight": "pytorch_model-00008-of-00015.bin",
361
+ "model.layers.44.mlp.gate_proj.weight": "pytorch_model-00008-of-00015.bin",
362
+ "model.layers.44.mlp.up_proj.weight": "pytorch_model-00008-of-00015.bin",
363
+ "model.layers.44.post_attention_layernorm.weight": "pytorch_model-00008-of-00015.bin",
364
+ "model.layers.44.self_attn.k_proj.weight": "pytorch_model-00008-of-00015.bin",
365
+ "model.layers.44.self_attn.o_proj.weight": "pytorch_model-00008-of-00015.bin",
366
+ "model.layers.44.self_attn.q_proj.weight": "pytorch_model-00008-of-00015.bin",
367
+ "model.layers.44.self_attn.v_proj.weight": "pytorch_model-00008-of-00015.bin",
368
+ "model.layers.45.input_layernorm.weight": "pytorch_model-00009-of-00015.bin",
369
+ "model.layers.45.mlp.down_proj.weight": "pytorch_model-00009-of-00015.bin",
370
+ "model.layers.45.mlp.gate_proj.weight": "pytorch_model-00008-of-00015.bin",
371
+ "model.layers.45.mlp.up_proj.weight": "pytorch_model-00008-of-00015.bin",
372
+ "model.layers.45.post_attention_layernorm.weight": "pytorch_model-00009-of-00015.bin",
373
+ "model.layers.45.self_attn.k_proj.weight": "pytorch_model-00008-of-00015.bin",
374
+ "model.layers.45.self_attn.o_proj.weight": "pytorch_model-00008-of-00015.bin",
375
+ "model.layers.45.self_attn.q_proj.weight": "pytorch_model-00008-of-00015.bin",
376
+ "model.layers.45.self_attn.v_proj.weight": "pytorch_model-00008-of-00015.bin",
377
+ "model.layers.46.input_layernorm.weight": "pytorch_model-00009-of-00015.bin",
378
+ "model.layers.46.mlp.down_proj.weight": "pytorch_model-00009-of-00015.bin",
379
+ "model.layers.46.mlp.gate_proj.weight": "pytorch_model-00009-of-00015.bin",
380
+ "model.layers.46.mlp.up_proj.weight": "pytorch_model-00009-of-00015.bin",
381
+ "model.layers.46.post_attention_layernorm.weight": "pytorch_model-00009-of-00015.bin",
382
+ "model.layers.46.self_attn.k_proj.weight": "pytorch_model-00009-of-00015.bin",
383
+ "model.layers.46.self_attn.o_proj.weight": "pytorch_model-00009-of-00015.bin",
384
+ "model.layers.46.self_attn.q_proj.weight": "pytorch_model-00009-of-00015.bin",
385
+ "model.layers.46.self_attn.v_proj.weight": "pytorch_model-00009-of-00015.bin",
386
+ "model.layers.47.input_layernorm.weight": "pytorch_model-00009-of-00015.bin",
387
+ "model.layers.47.mlp.down_proj.weight": "pytorch_model-00009-of-00015.bin",
388
+ "model.layers.47.mlp.gate_proj.weight": "pytorch_model-00009-of-00015.bin",
389
+ "model.layers.47.mlp.up_proj.weight": "pytorch_model-00009-of-00015.bin",
390
+ "model.layers.47.post_attention_layernorm.weight": "pytorch_model-00009-of-00015.bin",
391
+ "model.layers.47.self_attn.k_proj.weight": "pytorch_model-00009-of-00015.bin",
392
+ "model.layers.47.self_attn.o_proj.weight": "pytorch_model-00009-of-00015.bin",
393
+ "model.layers.47.self_attn.q_proj.weight": "pytorch_model-00009-of-00015.bin",
394
+ "model.layers.47.self_attn.v_proj.weight": "pytorch_model-00009-of-00015.bin",
395
+ "model.layers.48.input_layernorm.weight": "pytorch_model-00009-of-00015.bin",
396
+ "model.layers.48.mlp.down_proj.weight": "pytorch_model-00009-of-00015.bin",
397
+ "model.layers.48.mlp.gate_proj.weight": "pytorch_model-00009-of-00015.bin",
398
+ "model.layers.48.mlp.up_proj.weight": "pytorch_model-00009-of-00015.bin",
399
+ "model.layers.48.post_attention_layernorm.weight": "pytorch_model-00009-of-00015.bin",
400
+ "model.layers.48.self_attn.k_proj.weight": "pytorch_model-00009-of-00015.bin",
401
+ "model.layers.48.self_attn.o_proj.weight": "pytorch_model-00009-of-00015.bin",
402
+ "model.layers.48.self_attn.q_proj.weight": "pytorch_model-00009-of-00015.bin",
403
+ "model.layers.48.self_attn.v_proj.weight": "pytorch_model-00009-of-00015.bin",
404
+ "model.layers.49.input_layernorm.weight": "pytorch_model-00009-of-00015.bin",
405
+ "model.layers.49.mlp.down_proj.weight": "pytorch_model-00009-of-00015.bin",
406
+ "model.layers.49.mlp.gate_proj.weight": "pytorch_model-00009-of-00015.bin",
407
+ "model.layers.49.mlp.up_proj.weight": "pytorch_model-00009-of-00015.bin",
408
+ "model.layers.49.post_attention_layernorm.weight": "pytorch_model-00009-of-00015.bin",
409
+ "model.layers.49.self_attn.k_proj.weight": "pytorch_model-00009-of-00015.bin",
410
+ "model.layers.49.self_attn.o_proj.weight": "pytorch_model-00009-of-00015.bin",
411
+ "model.layers.49.self_attn.q_proj.weight": "pytorch_model-00009-of-00015.bin",
412
+ "model.layers.49.self_attn.v_proj.weight": "pytorch_model-00009-of-00015.bin",
413
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00002-of-00015.bin",
414
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00002-of-00015.bin",
415
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00015.bin",
416
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00002-of-00015.bin",
417
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00002-of-00015.bin",
418
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00015.bin",
419
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00015.bin",
420
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00015.bin",
421
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00015.bin",
422
+ "model.layers.50.input_layernorm.weight": "pytorch_model-00009-of-00015.bin",
423
+ "model.layers.50.mlp.down_proj.weight": "pytorch_model-00009-of-00015.bin",
424
+ "model.layers.50.mlp.gate_proj.weight": "pytorch_model-00009-of-00015.bin",
425
+ "model.layers.50.mlp.up_proj.weight": "pytorch_model-00009-of-00015.bin",
426
+ "model.layers.50.post_attention_layernorm.weight": "pytorch_model-00009-of-00015.bin",
427
+ "model.layers.50.self_attn.k_proj.weight": "pytorch_model-00009-of-00015.bin",
428
+ "model.layers.50.self_attn.o_proj.weight": "pytorch_model-00009-of-00015.bin",
429
+ "model.layers.50.self_attn.q_proj.weight": "pytorch_model-00009-of-00015.bin",
430
+ "model.layers.50.self_attn.v_proj.weight": "pytorch_model-00009-of-00015.bin",
431
+ "model.layers.51.input_layernorm.weight": "pytorch_model-00010-of-00015.bin",
432
+ "model.layers.51.mlp.down_proj.weight": "pytorch_model-00010-of-00015.bin",
433
+ "model.layers.51.mlp.gate_proj.weight": "pytorch_model-00009-of-00015.bin",
434
+ "model.layers.51.mlp.up_proj.weight": "pytorch_model-00010-of-00015.bin",
435
+ "model.layers.51.post_attention_layernorm.weight": "pytorch_model-00010-of-00015.bin",
436
+ "model.layers.51.self_attn.k_proj.weight": "pytorch_model-00009-of-00015.bin",
437
+ "model.layers.51.self_attn.o_proj.weight": "pytorch_model-00009-of-00015.bin",
438
+ "model.layers.51.self_attn.q_proj.weight": "pytorch_model-00009-of-00015.bin",
439
+ "model.layers.51.self_attn.v_proj.weight": "pytorch_model-00009-of-00015.bin",
440
+ "model.layers.52.input_layernorm.weight": "pytorch_model-00010-of-00015.bin",
441
+ "model.layers.52.mlp.down_proj.weight": "pytorch_model-00010-of-00015.bin",
442
+ "model.layers.52.mlp.gate_proj.weight": "pytorch_model-00010-of-00015.bin",
443
+ "model.layers.52.mlp.up_proj.weight": "pytorch_model-00010-of-00015.bin",
444
+ "model.layers.52.post_attention_layernorm.weight": "pytorch_model-00010-of-00015.bin",
445
+ "model.layers.52.self_attn.k_proj.weight": "pytorch_model-00010-of-00015.bin",
446
+ "model.layers.52.self_attn.o_proj.weight": "pytorch_model-00010-of-00015.bin",
447
+ "model.layers.52.self_attn.q_proj.weight": "pytorch_model-00010-of-00015.bin",
448
+ "model.layers.52.self_attn.v_proj.weight": "pytorch_model-00010-of-00015.bin",
449
+ "model.layers.53.input_layernorm.weight": "pytorch_model-00010-of-00015.bin",
450
+ "model.layers.53.mlp.down_proj.weight": "pytorch_model-00010-of-00015.bin",
451
+ "model.layers.53.mlp.gate_proj.weight": "pytorch_model-00010-of-00015.bin",
452
+ "model.layers.53.mlp.up_proj.weight": "pytorch_model-00010-of-00015.bin",
453
+ "model.layers.53.post_attention_layernorm.weight": "pytorch_model-00010-of-00015.bin",
454
+ "model.layers.53.self_attn.k_proj.weight": "pytorch_model-00010-of-00015.bin",
455
+ "model.layers.53.self_attn.o_proj.weight": "pytorch_model-00010-of-00015.bin",
456
+ "model.layers.53.self_attn.q_proj.weight": "pytorch_model-00010-of-00015.bin",
457
+ "model.layers.53.self_attn.v_proj.weight": "pytorch_model-00010-of-00015.bin",
458
+ "model.layers.54.input_layernorm.weight": "pytorch_model-00010-of-00015.bin",
459
+ "model.layers.54.mlp.down_proj.weight": "pytorch_model-00010-of-00015.bin",
460
+ "model.layers.54.mlp.gate_proj.weight": "pytorch_model-00010-of-00015.bin",
461
+ "model.layers.54.mlp.up_proj.weight": "pytorch_model-00010-of-00015.bin",
462
+ "model.layers.54.post_attention_layernorm.weight": "pytorch_model-00010-of-00015.bin",
463
+ "model.layers.54.self_attn.k_proj.weight": "pytorch_model-00010-of-00015.bin",
464
+ "model.layers.54.self_attn.o_proj.weight": "pytorch_model-00010-of-00015.bin",
465
+ "model.layers.54.self_attn.q_proj.weight": "pytorch_model-00010-of-00015.bin",
466
+ "model.layers.54.self_attn.v_proj.weight": "pytorch_model-00010-of-00015.bin",
467
+ "model.layers.55.input_layernorm.weight": "pytorch_model-00010-of-00015.bin",
468
+ "model.layers.55.mlp.down_proj.weight": "pytorch_model-00010-of-00015.bin",
469
+ "model.layers.55.mlp.gate_proj.weight": "pytorch_model-00010-of-00015.bin",
470
+ "model.layers.55.mlp.up_proj.weight": "pytorch_model-00010-of-00015.bin",
471
+ "model.layers.55.post_attention_layernorm.weight": "pytorch_model-00010-of-00015.bin",
472
+ "model.layers.55.self_attn.k_proj.weight": "pytorch_model-00010-of-00015.bin",
473
+ "model.layers.55.self_attn.o_proj.weight": "pytorch_model-00010-of-00015.bin",
474
+ "model.layers.55.self_attn.q_proj.weight": "pytorch_model-00010-of-00015.bin",
475
+ "model.layers.55.self_attn.v_proj.weight": "pytorch_model-00010-of-00015.bin",
476
+ "model.layers.56.input_layernorm.weight": "pytorch_model-00010-of-00015.bin",
477
+ "model.layers.56.mlp.down_proj.weight": "pytorch_model-00010-of-00015.bin",
478
+ "model.layers.56.mlp.gate_proj.weight": "pytorch_model-00010-of-00015.bin",
479
+ "model.layers.56.mlp.up_proj.weight": "pytorch_model-00010-of-00015.bin",
480
+ "model.layers.56.post_attention_layernorm.weight": "pytorch_model-00010-of-00015.bin",
481
+ "model.layers.56.self_attn.k_proj.weight": "pytorch_model-00010-of-00015.bin",
482
+ "model.layers.56.self_attn.o_proj.weight": "pytorch_model-00010-of-00015.bin",
483
+ "model.layers.56.self_attn.q_proj.weight": "pytorch_model-00010-of-00015.bin",
484
+ "model.layers.56.self_attn.v_proj.weight": "pytorch_model-00010-of-00015.bin",
485
+ "model.layers.57.input_layernorm.weight": "pytorch_model-00011-of-00015.bin",
486
+ "model.layers.57.mlp.down_proj.weight": "pytorch_model-00011-of-00015.bin",
487
+ "model.layers.57.mlp.gate_proj.weight": "pytorch_model-00011-of-00015.bin",
488
+ "model.layers.57.mlp.up_proj.weight": "pytorch_model-00011-of-00015.bin",
489
+ "model.layers.57.post_attention_layernorm.weight": "pytorch_model-00011-of-00015.bin",
490
+ "model.layers.57.self_attn.k_proj.weight": "pytorch_model-00010-of-00015.bin",
491
+ "model.layers.57.self_attn.o_proj.weight": "pytorch_model-00010-of-00015.bin",
492
+ "model.layers.57.self_attn.q_proj.weight": "pytorch_model-00010-of-00015.bin",
493
+ "model.layers.57.self_attn.v_proj.weight": "pytorch_model-00010-of-00015.bin",
494
+ "model.layers.58.input_layernorm.weight": "pytorch_model-00011-of-00015.bin",
495
+ "model.layers.58.mlp.down_proj.weight": "pytorch_model-00011-of-00015.bin",
496
+ "model.layers.58.mlp.gate_proj.weight": "pytorch_model-00011-of-00015.bin",
497
+ "model.layers.58.mlp.up_proj.weight": "pytorch_model-00011-of-00015.bin",
498
+ "model.layers.58.post_attention_layernorm.weight": "pytorch_model-00011-of-00015.bin",
499
+ "model.layers.58.self_attn.k_proj.weight": "pytorch_model-00011-of-00015.bin",
500
+ "model.layers.58.self_attn.o_proj.weight": "pytorch_model-00011-of-00015.bin",
501
+ "model.layers.58.self_attn.q_proj.weight": "pytorch_model-00011-of-00015.bin",
502
+ "model.layers.58.self_attn.v_proj.weight": "pytorch_model-00011-of-00015.bin",
503
+ "model.layers.59.input_layernorm.weight": "pytorch_model-00011-of-00015.bin",
504
+ "model.layers.59.mlp.down_proj.weight": "pytorch_model-00011-of-00015.bin",
505
+ "model.layers.59.mlp.gate_proj.weight": "pytorch_model-00011-of-00015.bin",
506
+ "model.layers.59.mlp.up_proj.weight": "pytorch_model-00011-of-00015.bin",
507
+ "model.layers.59.post_attention_layernorm.weight": "pytorch_model-00011-of-00015.bin",
508
+ "model.layers.59.self_attn.k_proj.weight": "pytorch_model-00011-of-00015.bin",
509
+ "model.layers.59.self_attn.o_proj.weight": "pytorch_model-00011-of-00015.bin",
510
+ "model.layers.59.self_attn.q_proj.weight": "pytorch_model-00011-of-00015.bin",
511
+ "model.layers.59.self_attn.v_proj.weight": "pytorch_model-00011-of-00015.bin",
512
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00002-of-00015.bin",
513
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00002-of-00015.bin",
514
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00002-of-00015.bin",
515
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00002-of-00015.bin",
516
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00002-of-00015.bin",
517
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00002-of-00015.bin",
518
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00002-of-00015.bin",
519
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00002-of-00015.bin",
520
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00002-of-00015.bin",
521
+ "model.layers.60.input_layernorm.weight": "pytorch_model-00011-of-00015.bin",
522
+ "model.layers.60.mlp.down_proj.weight": "pytorch_model-00011-of-00015.bin",
523
+ "model.layers.60.mlp.gate_proj.weight": "pytorch_model-00011-of-00015.bin",
524
+ "model.layers.60.mlp.up_proj.weight": "pytorch_model-00011-of-00015.bin",
525
+ "model.layers.60.post_attention_layernorm.weight": "pytorch_model-00011-of-00015.bin",
526
+ "model.layers.60.self_attn.k_proj.weight": "pytorch_model-00011-of-00015.bin",
527
+ "model.layers.60.self_attn.o_proj.weight": "pytorch_model-00011-of-00015.bin",
528
+ "model.layers.60.self_attn.q_proj.weight": "pytorch_model-00011-of-00015.bin",
529
+ "model.layers.60.self_attn.v_proj.weight": "pytorch_model-00011-of-00015.bin",
530
+ "model.layers.61.input_layernorm.weight": "pytorch_model-00011-of-00015.bin",
531
+ "model.layers.61.mlp.down_proj.weight": "pytorch_model-00011-of-00015.bin",
532
+ "model.layers.61.mlp.gate_proj.weight": "pytorch_model-00011-of-00015.bin",
533
+ "model.layers.61.mlp.up_proj.weight": "pytorch_model-00011-of-00015.bin",
534
+ "model.layers.61.post_attention_layernorm.weight": "pytorch_model-00011-of-00015.bin",
535
+ "model.layers.61.self_attn.k_proj.weight": "pytorch_model-00011-of-00015.bin",
536
+ "model.layers.61.self_attn.o_proj.weight": "pytorch_model-00011-of-00015.bin",
537
+ "model.layers.61.self_attn.q_proj.weight": "pytorch_model-00011-of-00015.bin",
538
+ "model.layers.61.self_attn.v_proj.weight": "pytorch_model-00011-of-00015.bin",
539
+ "model.layers.62.input_layernorm.weight": "pytorch_model-00011-of-00015.bin",
540
+ "model.layers.62.mlp.down_proj.weight": "pytorch_model-00011-of-00015.bin",
541
+ "model.layers.62.mlp.gate_proj.weight": "pytorch_model-00011-of-00015.bin",
542
+ "model.layers.62.mlp.up_proj.weight": "pytorch_model-00011-of-00015.bin",
543
+ "model.layers.62.post_attention_layernorm.weight": "pytorch_model-00011-of-00015.bin",
544
+ "model.layers.62.self_attn.k_proj.weight": "pytorch_model-00011-of-00015.bin",
545
+ "model.layers.62.self_attn.o_proj.weight": "pytorch_model-00011-of-00015.bin",
546
+ "model.layers.62.self_attn.q_proj.weight": "pytorch_model-00011-of-00015.bin",
547
+ "model.layers.62.self_attn.v_proj.weight": "pytorch_model-00011-of-00015.bin",
548
+ "model.layers.63.input_layernorm.weight": "pytorch_model-00012-of-00015.bin",
549
+ "model.layers.63.mlp.down_proj.weight": "pytorch_model-00012-of-00015.bin",
550
+ "model.layers.63.mlp.gate_proj.weight": "pytorch_model-00012-of-00015.bin",
551
+ "model.layers.63.mlp.up_proj.weight": "pytorch_model-00012-of-00015.bin",
552
+ "model.layers.63.post_attention_layernorm.weight": "pytorch_model-00012-of-00015.bin",
553
+ "model.layers.63.self_attn.k_proj.weight": "pytorch_model-00012-of-00015.bin",
554
+ "model.layers.63.self_attn.o_proj.weight": "pytorch_model-00012-of-00015.bin",
555
+ "model.layers.63.self_attn.q_proj.weight": "pytorch_model-00012-of-00015.bin",
556
+ "model.layers.63.self_attn.v_proj.weight": "pytorch_model-00012-of-00015.bin",
557
+ "model.layers.64.input_layernorm.weight": "pytorch_model-00012-of-00015.bin",
558
+ "model.layers.64.mlp.down_proj.weight": "pytorch_model-00012-of-00015.bin",
559
+ "model.layers.64.mlp.gate_proj.weight": "pytorch_model-00012-of-00015.bin",
560
+ "model.layers.64.mlp.up_proj.weight": "pytorch_model-00012-of-00015.bin",
561
+ "model.layers.64.post_attention_layernorm.weight": "pytorch_model-00012-of-00015.bin",
562
+ "model.layers.64.self_attn.k_proj.weight": "pytorch_model-00012-of-00015.bin",
563
+ "model.layers.64.self_attn.o_proj.weight": "pytorch_model-00012-of-00015.bin",
564
+ "model.layers.64.self_attn.q_proj.weight": "pytorch_model-00012-of-00015.bin",
565
+ "model.layers.64.self_attn.v_proj.weight": "pytorch_model-00012-of-00015.bin",
566
+ "model.layers.65.input_layernorm.weight": "pytorch_model-00012-of-00015.bin",
567
+ "model.layers.65.mlp.down_proj.weight": "pytorch_model-00012-of-00015.bin",
568
+ "model.layers.65.mlp.gate_proj.weight": "pytorch_model-00012-of-00015.bin",
569
+ "model.layers.65.mlp.up_proj.weight": "pytorch_model-00012-of-00015.bin",
570
+ "model.layers.65.post_attention_layernorm.weight": "pytorch_model-00012-of-00015.bin",
571
+ "model.layers.65.self_attn.k_proj.weight": "pytorch_model-00012-of-00015.bin",
572
+ "model.layers.65.self_attn.o_proj.weight": "pytorch_model-00012-of-00015.bin",
573
+ "model.layers.65.self_attn.q_proj.weight": "pytorch_model-00012-of-00015.bin",
574
+ "model.layers.65.self_attn.v_proj.weight": "pytorch_model-00012-of-00015.bin",
575
+ "model.layers.66.input_layernorm.weight": "pytorch_model-00012-of-00015.bin",
576
+ "model.layers.66.mlp.down_proj.weight": "pytorch_model-00012-of-00015.bin",
577
+ "model.layers.66.mlp.gate_proj.weight": "pytorch_model-00012-of-00015.bin",
578
+ "model.layers.66.mlp.up_proj.weight": "pytorch_model-00012-of-00015.bin",
579
+ "model.layers.66.post_attention_layernorm.weight": "pytorch_model-00012-of-00015.bin",
580
+ "model.layers.66.self_attn.k_proj.weight": "pytorch_model-00012-of-00015.bin",
581
+ "model.layers.66.self_attn.o_proj.weight": "pytorch_model-00012-of-00015.bin",
582
+ "model.layers.66.self_attn.q_proj.weight": "pytorch_model-00012-of-00015.bin",
583
+ "model.layers.66.self_attn.v_proj.weight": "pytorch_model-00012-of-00015.bin",
584
+ "model.layers.67.input_layernorm.weight": "pytorch_model-00012-of-00015.bin",
585
+ "model.layers.67.mlp.down_proj.weight": "pytorch_model-00012-of-00015.bin",
586
+ "model.layers.67.mlp.gate_proj.weight": "pytorch_model-00012-of-00015.bin",
587
+ "model.layers.67.mlp.up_proj.weight": "pytorch_model-00012-of-00015.bin",
588
+ "model.layers.67.post_attention_layernorm.weight": "pytorch_model-00012-of-00015.bin",
589
+ "model.layers.67.self_attn.k_proj.weight": "pytorch_model-00012-of-00015.bin",
590
+ "model.layers.67.self_attn.o_proj.weight": "pytorch_model-00012-of-00015.bin",
591
+ "model.layers.67.self_attn.q_proj.weight": "pytorch_model-00012-of-00015.bin",
592
+ "model.layers.67.self_attn.v_proj.weight": "pytorch_model-00012-of-00015.bin",
593
+ "model.layers.68.input_layernorm.weight": "pytorch_model-00013-of-00015.bin",
594
+ "model.layers.68.mlp.down_proj.weight": "pytorch_model-00013-of-00015.bin",
595
+ "model.layers.68.mlp.gate_proj.weight": "pytorch_model-00012-of-00015.bin",
596
+ "model.layers.68.mlp.up_proj.weight": "pytorch_model-00012-of-00015.bin",
597
+ "model.layers.68.post_attention_layernorm.weight": "pytorch_model-00013-of-00015.bin",
598
+ "model.layers.68.self_attn.k_proj.weight": "pytorch_model-00012-of-00015.bin",
599
+ "model.layers.68.self_attn.o_proj.weight": "pytorch_model-00012-of-00015.bin",
600
+ "model.layers.68.self_attn.q_proj.weight": "pytorch_model-00012-of-00015.bin",
601
+ "model.layers.68.self_attn.v_proj.weight": "pytorch_model-00012-of-00015.bin",
602
+ "model.layers.69.input_layernorm.weight": "pytorch_model-00013-of-00015.bin",
603
+ "model.layers.69.mlp.down_proj.weight": "pytorch_model-00013-of-00015.bin",
604
+ "model.layers.69.mlp.gate_proj.weight": "pytorch_model-00013-of-00015.bin",
605
+ "model.layers.69.mlp.up_proj.weight": "pytorch_model-00013-of-00015.bin",
606
+ "model.layers.69.post_attention_layernorm.weight": "pytorch_model-00013-of-00015.bin",
607
+ "model.layers.69.self_attn.k_proj.weight": "pytorch_model-00013-of-00015.bin",
608
+ "model.layers.69.self_attn.o_proj.weight": "pytorch_model-00013-of-00015.bin",
609
+ "model.layers.69.self_attn.q_proj.weight": "pytorch_model-00013-of-00015.bin",
610
+ "model.layers.69.self_attn.v_proj.weight": "pytorch_model-00013-of-00015.bin",
611
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00002-of-00015.bin",
612
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00002-of-00015.bin",
613
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00002-of-00015.bin",
614
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00002-of-00015.bin",
615
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00002-of-00015.bin",
616
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00002-of-00015.bin",
617
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00002-of-00015.bin",
618
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00002-of-00015.bin",
619
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00002-of-00015.bin",
620
+ "model.layers.70.input_layernorm.weight": "pytorch_model-00013-of-00015.bin",
621
+ "model.layers.70.mlp.down_proj.weight": "pytorch_model-00013-of-00015.bin",
622
+ "model.layers.70.mlp.gate_proj.weight": "pytorch_model-00013-of-00015.bin",
623
+ "model.layers.70.mlp.up_proj.weight": "pytorch_model-00013-of-00015.bin",
624
+ "model.layers.70.post_attention_layernorm.weight": "pytorch_model-00013-of-00015.bin",
625
+ "model.layers.70.self_attn.k_proj.weight": "pytorch_model-00013-of-00015.bin",
626
+ "model.layers.70.self_attn.o_proj.weight": "pytorch_model-00013-of-00015.bin",
627
+ "model.layers.70.self_attn.q_proj.weight": "pytorch_model-00013-of-00015.bin",
628
+ "model.layers.70.self_attn.v_proj.weight": "pytorch_model-00013-of-00015.bin",
629
+ "model.layers.71.input_layernorm.weight": "pytorch_model-00013-of-00015.bin",
630
+ "model.layers.71.mlp.down_proj.weight": "pytorch_model-00013-of-00015.bin",
631
+ "model.layers.71.mlp.gate_proj.weight": "pytorch_model-00013-of-00015.bin",
632
+ "model.layers.71.mlp.up_proj.weight": "pytorch_model-00013-of-00015.bin",
633
+ "model.layers.71.post_attention_layernorm.weight": "pytorch_model-00013-of-00015.bin",
634
+ "model.layers.71.self_attn.k_proj.weight": "pytorch_model-00013-of-00015.bin",
635
+ "model.layers.71.self_attn.o_proj.weight": "pytorch_model-00013-of-00015.bin",
636
+ "model.layers.71.self_attn.q_proj.weight": "pytorch_model-00013-of-00015.bin",
637
+ "model.layers.71.self_attn.v_proj.weight": "pytorch_model-00013-of-00015.bin",
638
+ "model.layers.72.input_layernorm.weight": "pytorch_model-00013-of-00015.bin",
639
+ "model.layers.72.mlp.down_proj.weight": "pytorch_model-00013-of-00015.bin",
640
+ "model.layers.72.mlp.gate_proj.weight": "pytorch_model-00013-of-00015.bin",
641
+ "model.layers.72.mlp.up_proj.weight": "pytorch_model-00013-of-00015.bin",
642
+ "model.layers.72.post_attention_layernorm.weight": "pytorch_model-00013-of-00015.bin",
643
+ "model.layers.72.self_attn.k_proj.weight": "pytorch_model-00013-of-00015.bin",
644
+ "model.layers.72.self_attn.o_proj.weight": "pytorch_model-00013-of-00015.bin",
645
+ "model.layers.72.self_attn.q_proj.weight": "pytorch_model-00013-of-00015.bin",
646
+ "model.layers.72.self_attn.v_proj.weight": "pytorch_model-00013-of-00015.bin",
647
+ "model.layers.73.input_layernorm.weight": "pytorch_model-00013-of-00015.bin",
648
+ "model.layers.73.mlp.down_proj.weight": "pytorch_model-00013-of-00015.bin",
649
+ "model.layers.73.mlp.gate_proj.weight": "pytorch_model-00013-of-00015.bin",
650
+ "model.layers.73.mlp.up_proj.weight": "pytorch_model-00013-of-00015.bin",
651
+ "model.layers.73.post_attention_layernorm.weight": "pytorch_model-00013-of-00015.bin",
652
+ "model.layers.73.self_attn.k_proj.weight": "pytorch_model-00013-of-00015.bin",
653
+ "model.layers.73.self_attn.o_proj.weight": "pytorch_model-00013-of-00015.bin",
654
+ "model.layers.73.self_attn.q_proj.weight": "pytorch_model-00013-of-00015.bin",
655
+ "model.layers.73.self_attn.v_proj.weight": "pytorch_model-00013-of-00015.bin",
656
+ "model.layers.74.input_layernorm.weight": "pytorch_model-00014-of-00015.bin",
657
+ "model.layers.74.mlp.down_proj.weight": "pytorch_model-00014-of-00015.bin",
658
+ "model.layers.74.mlp.gate_proj.weight": "pytorch_model-00013-of-00015.bin",
659
+ "model.layers.74.mlp.up_proj.weight": "pytorch_model-00014-of-00015.bin",
660
+ "model.layers.74.post_attention_layernorm.weight": "pytorch_model-00014-of-00015.bin",
661
+ "model.layers.74.self_attn.k_proj.weight": "pytorch_model-00013-of-00015.bin",
662
+ "model.layers.74.self_attn.o_proj.weight": "pytorch_model-00013-of-00015.bin",
663
+ "model.layers.74.self_attn.q_proj.weight": "pytorch_model-00013-of-00015.bin",
664
+ "model.layers.74.self_attn.v_proj.weight": "pytorch_model-00013-of-00015.bin",
665
+ "model.layers.75.input_layernorm.weight": "pytorch_model-00014-of-00015.bin",
666
+ "model.layers.75.mlp.down_proj.weight": "pytorch_model-00014-of-00015.bin",
667
+ "model.layers.75.mlp.gate_proj.weight": "pytorch_model-00014-of-00015.bin",
668
+ "model.layers.75.mlp.up_proj.weight": "pytorch_model-00014-of-00015.bin",
669
+ "model.layers.75.post_attention_layernorm.weight": "pytorch_model-00014-of-00015.bin",
670
+ "model.layers.75.self_attn.k_proj.weight": "pytorch_model-00014-of-00015.bin",
671
+ "model.layers.75.self_attn.o_proj.weight": "pytorch_model-00014-of-00015.bin",
672
+ "model.layers.75.self_attn.q_proj.weight": "pytorch_model-00014-of-00015.bin",
673
+ "model.layers.75.self_attn.v_proj.weight": "pytorch_model-00014-of-00015.bin",
674
+ "model.layers.76.input_layernorm.weight": "pytorch_model-00014-of-00015.bin",
675
+ "model.layers.76.mlp.down_proj.weight": "pytorch_model-00014-of-00015.bin",
676
+ "model.layers.76.mlp.gate_proj.weight": "pytorch_model-00014-of-00015.bin",
677
+ "model.layers.76.mlp.up_proj.weight": "pytorch_model-00014-of-00015.bin",
678
+ "model.layers.76.post_attention_layernorm.weight": "pytorch_model-00014-of-00015.bin",
679
+ "model.layers.76.self_attn.k_proj.weight": "pytorch_model-00014-of-00015.bin",
680
+ "model.layers.76.self_attn.o_proj.weight": "pytorch_model-00014-of-00015.bin",
681
+ "model.layers.76.self_attn.q_proj.weight": "pytorch_model-00014-of-00015.bin",
682
+ "model.layers.76.self_attn.v_proj.weight": "pytorch_model-00014-of-00015.bin",
683
+ "model.layers.77.input_layernorm.weight": "pytorch_model-00014-of-00015.bin",
684
+ "model.layers.77.mlp.down_proj.weight": "pytorch_model-00014-of-00015.bin",
685
+ "model.layers.77.mlp.gate_proj.weight": "pytorch_model-00014-of-00015.bin",
686
+ "model.layers.77.mlp.up_proj.weight": "pytorch_model-00014-of-00015.bin",
687
+ "model.layers.77.post_attention_layernorm.weight": "pytorch_model-00014-of-00015.bin",
688
+ "model.layers.77.self_attn.k_proj.weight": "pytorch_model-00014-of-00015.bin",
689
+ "model.layers.77.self_attn.o_proj.weight": "pytorch_model-00014-of-00015.bin",
690
+ "model.layers.77.self_attn.q_proj.weight": "pytorch_model-00014-of-00015.bin",
691
+ "model.layers.77.self_attn.v_proj.weight": "pytorch_model-00014-of-00015.bin",
692
+ "model.layers.78.input_layernorm.weight": "pytorch_model-00014-of-00015.bin",
693
+ "model.layers.78.mlp.down_proj.weight": "pytorch_model-00014-of-00015.bin",
694
+ "model.layers.78.mlp.gate_proj.weight": "pytorch_model-00014-of-00015.bin",
695
+ "model.layers.78.mlp.up_proj.weight": "pytorch_model-00014-of-00015.bin",
696
+ "model.layers.78.post_attention_layernorm.weight": "pytorch_model-00014-of-00015.bin",
697
+ "model.layers.78.self_attn.k_proj.weight": "pytorch_model-00014-of-00015.bin",
698
+ "model.layers.78.self_attn.o_proj.weight": "pytorch_model-00014-of-00015.bin",
699
+ "model.layers.78.self_attn.q_proj.weight": "pytorch_model-00014-of-00015.bin",
700
+ "model.layers.78.self_attn.v_proj.weight": "pytorch_model-00014-of-00015.bin",
701
+ "model.layers.79.input_layernorm.weight": "pytorch_model-00014-of-00015.bin",
702
+ "model.layers.79.mlp.down_proj.weight": "pytorch_model-00014-of-00015.bin",
703
+ "model.layers.79.mlp.gate_proj.weight": "pytorch_model-00014-of-00015.bin",
704
+ "model.layers.79.mlp.up_proj.weight": "pytorch_model-00014-of-00015.bin",
705
+ "model.layers.79.post_attention_layernorm.weight": "pytorch_model-00014-of-00015.bin",
706
+ "model.layers.79.self_attn.k_proj.weight": "pytorch_model-00014-of-00015.bin",
707
+ "model.layers.79.self_attn.o_proj.weight": "pytorch_model-00014-of-00015.bin",
708
+ "model.layers.79.self_attn.q_proj.weight": "pytorch_model-00014-of-00015.bin",
709
+ "model.layers.79.self_attn.v_proj.weight": "pytorch_model-00014-of-00015.bin",
710
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00015.bin",
711
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00015.bin",
712
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00002-of-00015.bin",
713
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00002-of-00015.bin",
714
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00015.bin",
715
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00002-of-00015.bin",
716
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00002-of-00015.bin",
717
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00002-of-00015.bin",
718
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00002-of-00015.bin",
719
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00015.bin",
720
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00015.bin",
721
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00015.bin",
722
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00015.bin",
723
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00015.bin",
724
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00015.bin",
725
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00015.bin",
726
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00015.bin",
727
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00015.bin",
728
+ "model.norm.weight": "pytorch_model-00014-of-00015.bin"
729
+ }
730
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "__type": "AddedToken",
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "clean_up_tokenization_spaces": false,
11
+ "eos_token": {
12
+ "__type": "AddedToken",
13
+ "content": "</s>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ },
19
+ "legacy": false,
20
+ "model_max_length": 1000000000000000019884624838656,
21
+ "pad_token": null,
22
+ "padding_side": "right",
23
+ "sp_model_kwargs": {},
24
+ "tokenizer_class": "LlamaTokenizer",
25
+ "unk_token": {
26
+ "__type": "AddedToken",
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ },
33
+ "use_default_system_prompt": true
34
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 1.008456783521743,
4
+ "train_runtime": 75047.9043,
5
+ "train_samples": 25188,
6
+ "train_samples_per_second": 0.336,
7
+ "train_steps_per_second": 0.007
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,3178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 15.0,
6
+ "global_step": 525,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 1.25e-06,
14
+ "loss": 1.2013,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 2.5e-06,
20
+ "loss": 1.2758,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 3.7500000000000005e-06,
26
+ "loss": 1.3713,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 5e-06,
32
+ "loss": 1.2094,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 6.25e-06,
38
+ "loss": 1.1364,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 7.500000000000001e-06,
44
+ "loss": 1.2654,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 8.750000000000001e-06,
50
+ "loss": 1.1074,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 1e-05,
56
+ "loss": 1.2926,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 1.125e-05,
62
+ "loss": 1.0516,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 1.25e-05,
68
+ "loss": 1.0722,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 1.375e-05,
74
+ "loss": 1.1681,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 1.5000000000000002e-05,
80
+ "loss": 1.0346,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 1.6250000000000002e-05,
86
+ "loss": 1.2024,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 1.7500000000000002e-05,
92
+ "loss": 1.093,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 1.8750000000000002e-05,
98
+ "loss": 1.012,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 2e-05,
104
+ "loss": 1.2205,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 1.9999809527270053e-05,
110
+ "loss": 0.925,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 1.999923811633618e-05,
116
+ "loss": 1.0383,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.04,
121
+ "learning_rate": 1.9998285788966027e-05,
122
+ "loss": 1.0327,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.04,
127
+ "learning_rate": 1.999695258143807e-05,
128
+ "loss": 1.058,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "learning_rate": 1.999523854454024e-05,
134
+ "loss": 1.1077,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 1.9993143743568e-05,
140
+ "loss": 0.9494,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 1.999066825832184e-05,
146
+ "loss": 1.0373,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.05,
151
+ "learning_rate": 1.998781218310425e-05,
152
+ "loss": 1.1996,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.05,
157
+ "learning_rate": 1.9984575626716113e-05,
158
+ "loss": 0.899,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.05,
163
+ "learning_rate": 1.9980958712452577e-05,
164
+ "loss": 1.0654,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.05,
169
+ "learning_rate": 1.9976961578098352e-05,
170
+ "loss": 1.1306,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 1.9972584375922453e-05,
176
+ "loss": 1.0501,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.06,
181
+ "learning_rate": 1.9967827272672407e-05,
182
+ "loss": 1.0959,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.06,
187
+ "learning_rate": 1.996269044956791e-05,
188
+ "loss": 1.0585,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.06,
193
+ "learning_rate": 1.99571741022939e-05,
194
+ "loss": 0.9487,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.06,
199
+ "learning_rate": 1.9951278440993128e-05,
200
+ "loss": 1.03,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.06,
205
+ "learning_rate": 1.9945003690258127e-05,
206
+ "loss": 1.1106,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.06,
211
+ "learning_rate": 1.993835008912268e-05,
212
+ "loss": 0.9199,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.07,
217
+ "learning_rate": 1.9931317891052707e-05,
218
+ "loss": 1.0684,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.07,
223
+ "learning_rate": 1.9923907363936593e-05,
224
+ "loss": 0.9362,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.07,
229
+ "learning_rate": 1.991611879007501e-05,
230
+ "loss": 1.0414,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.07,
235
+ "learning_rate": 1.990795246617014e-05,
236
+ "loss": 1.161,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.07,
241
+ "learning_rate": 1.9899408703314383e-05,
242
+ "loss": 0.9178,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.08,
247
+ "learning_rate": 1.989048782697851e-05,
248
+ "loss": 1.0846,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.08,
253
+ "learning_rate": 1.9881190176999255e-05,
254
+ "loss": 0.9939,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.08,
259
+ "learning_rate": 1.9871516107566366e-05,
260
+ "loss": 0.9798,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.08,
265
+ "learning_rate": 1.986146598720913e-05,
266
+ "loss": 1.0917,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.08,
271
+ "learning_rate": 1.985104019878233e-05,
272
+ "loss": 0.8748,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.09,
277
+ "learning_rate": 1.9840239139451622e-05,
278
+ "loss": 1.0609,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.09,
283
+ "learning_rate": 1.982906322067847e-05,
284
+ "loss": 1.0462,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.09,
289
+ "learning_rate": 1.9817512868204425e-05,
290
+ "loss": 0.9416,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.09,
295
+ "learning_rate": 1.980558852203492e-05,
296
+ "loss": 1.0883,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.09,
301
+ "learning_rate": 1.9793290636422503e-05,
302
+ "loss": 1.0643,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.1,
307
+ "learning_rate": 1.9780619679849552e-05,
308
+ "loss": 1.1065,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.1,
313
+ "learning_rate": 1.97675761350104e-05,
314
+ "loss": 0.932,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.1,
319
+ "learning_rate": 1.9754160498792964e-05,
320
+ "loss": 0.9377,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.1,
325
+ "learning_rate": 1.974037328225982e-05,
326
+ "loss": 1.061,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.1,
331
+ "learning_rate": 1.9726215010628717e-05,
332
+ "loss": 1.049,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.1,
337
+ "learning_rate": 1.971168622325259e-05,
338
+ "loss": 0.9426,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.11,
343
+ "learning_rate": 1.9696787473598993e-05,
344
+ "loss": 0.9608,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.11,
349
+ "learning_rate": 1.968151932922903e-05,
350
+ "loss": 1.0438,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.11,
355
+ "learning_rate": 1.9665882371775735e-05,
356
+ "loss": 1.0972,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.11,
361
+ "learning_rate": 1.96498771969219e-05,
362
+ "loss": 1.062,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.11,
367
+ "learning_rate": 1.963350441437739e-05,
368
+ "loss": 1.0511,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.12,
373
+ "learning_rate": 1.9616764647855924e-05,
374
+ "loss": 1.0602,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.12,
379
+ "learning_rate": 1.9599658535051312e-05,
380
+ "loss": 1.111,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.12,
385
+ "learning_rate": 1.9582186727613152e-05,
386
+ "loss": 0.9868,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.12,
391
+ "learning_rate": 1.9564349891122017e-05,
392
+ "loss": 0.9718,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.12,
397
+ "learning_rate": 1.9546148705064097e-05,
398
+ "loss": 1.0348,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.13,
403
+ "learning_rate": 1.9527583862805303e-05,
404
+ "loss": 0.9947,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.13,
409
+ "learning_rate": 1.9508656071564883e-05,
410
+ "loss": 0.9132,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.13,
415
+ "learning_rate": 1.9489366052388443e-05,
416
+ "loss": 1.1411,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.13,
421
+ "learning_rate": 1.946971454012051e-05,
422
+ "loss": 0.8929,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.13,
427
+ "learning_rate": 1.9449702283376516e-05,
428
+ "loss": 0.9863,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.14,
433
+ "learning_rate": 1.9429330044514305e-05,
434
+ "loss": 0.9028,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.14,
439
+ "learning_rate": 1.9408598599605062e-05,
440
+ "loss": 1.0009,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.14,
445
+ "learning_rate": 1.938750873840377e-05,
446
+ "loss": 1.0323,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.14,
451
+ "learning_rate": 1.9366061264319112e-05,
452
+ "loss": 1.205,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.14,
457
+ "learning_rate": 1.934425699438288e-05,
458
+ "loss": 1.0304,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.14,
463
+ "learning_rate": 1.9322096759218838e-05,
464
+ "loss": 1.0166,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.15,
469
+ "learning_rate": 1.9299581403011082e-05,
470
+ "loss": 0.9792,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.15,
475
+ "learning_rate": 1.9276711783471888e-05,
476
+ "loss": 1.0663,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.15,
481
+ "learning_rate": 1.9253488771809024e-05,
482
+ "loss": 1.0008,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.15,
487
+ "learning_rate": 1.922991325269258e-05,
488
+ "loss": 1.035,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.15,
493
+ "learning_rate": 1.920598612422125e-05,
494
+ "loss": 1.0196,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.16,
499
+ "learning_rate": 1.9181708297888133e-05,
500
+ "loss": 0.9973,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.16,
505
+ "learning_rate": 1.9157080698546e-05,
506
+ "loss": 1.0891,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.16,
511
+ "learning_rate": 1.9132104264372065e-05,
512
+ "loss": 1.1233,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.16,
517
+ "learning_rate": 1.910677994683225e-05,
518
+ "loss": 0.9175,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.16,
523
+ "learning_rate": 1.9081108710644933e-05,
524
+ "loss": 1.0085,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.17,
529
+ "learning_rate": 1.9055091533744204e-05,
530
+ "loss": 1.0296,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.17,
535
+ "learning_rate": 1.9028729407242598e-05,
536
+ "loss": 0.9736,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.17,
541
+ "learning_rate": 1.9002023335393366e-05,
542
+ "loss": 1.0423,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.17,
547
+ "learning_rate": 1.897497433555218e-05,
548
+ "loss": 1.0293,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.17,
553
+ "learning_rate": 1.894758343813842e-05,
554
+ "loss": 0.9725,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.18,
559
+ "learning_rate": 1.8919851686595875e-05,
560
+ "loss": 1.0399,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.18,
565
+ "learning_rate": 1.8891780137353036e-05,
566
+ "loss": 1.0698,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.18,
571
+ "learning_rate": 1.8863369859782824e-05,
572
+ "loss": 1.0414,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.18,
577
+ "learning_rate": 1.883462193616187e-05,
578
+ "loss": 1.0559,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.18,
583
+ "learning_rate": 1.8805537461629266e-05,
584
+ "loss": 1.0205,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.18,
589
+ "learning_rate": 1.8776117544144866e-05,
590
+ "loss": 1.0146,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.19,
595
+ "learning_rate": 1.8746363304447073e-05,
596
+ "loss": 1.0369,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.19,
601
+ "learning_rate": 1.8716275876010135e-05,
602
+ "loss": 1.1089,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.19,
607
+ "learning_rate": 1.8685856405000984e-05,
608
+ "loss": 1.0616,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.19,
613
+ "learning_rate": 1.865510605023555e-05,
614
+ "loss": 1.1595,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.19,
619
+ "learning_rate": 1.8624025983134643e-05,
620
+ "loss": 0.9224,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.2,
625
+ "learning_rate": 1.8592617387679304e-05,
626
+ "loss": 0.9449,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.2,
631
+ "learning_rate": 1.8560881460365726e-05,
632
+ "loss": 0.9947,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.2,
637
+ "learning_rate": 1.8528819410159638e-05,
638
+ "loss": 0.9683,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.2,
643
+ "learning_rate": 1.8496432458450297e-05,
644
+ "loss": 1.0687,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.2,
649
+ "learning_rate": 1.8463721839003917e-05,
650
+ "loss": 0.9345,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.21,
655
+ "learning_rate": 1.8430688797916702e-05,
656
+ "loss": 0.9944,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.21,
661
+ "learning_rate": 1.8397334593567347e-05,
662
+ "loss": 0.9834,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.21,
667
+ "learning_rate": 1.836366049656913e-05,
668
+ "loss": 0.9557,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.21,
673
+ "learning_rate": 1.8329667789721487e-05,
674
+ "loss": 0.9486,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.21,
679
+ "learning_rate": 1.8295357767961144e-05,
680
+ "loss": 0.9461,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.22,
685
+ "learning_rate": 1.8260731738312817e-05,
686
+ "loss": 1.0935,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.22,
691
+ "learning_rate": 1.8225791019839375e-05,
692
+ "loss": 0.9832,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.22,
697
+ "learning_rate": 1.8190536943591627e-05,
698
+ "loss": 1.1332,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.22,
703
+ "learning_rate": 1.8154970852557604e-05,
704
+ "loss": 0.9484,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.22,
709
+ "learning_rate": 1.811909410161139e-05,
710
+ "loss": 0.9992,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.22,
715
+ "learning_rate": 1.8082908057461534e-05,
716
+ "loss": 0.9772,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.23,
721
+ "learning_rate": 1.8046414098598947e-05,
722
+ "loss": 1.0294,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.23,
727
+ "learning_rate": 1.8009613615244438e-05,
728
+ "loss": 1.0607,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.23,
733
+ "learning_rate": 1.79725080092957e-05,
734
+ "loss": 0.9284,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.23,
739
+ "learning_rate": 1.793509869427395e-05,
740
+ "loss": 1.3684,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.23,
745
+ "learning_rate": 1.7897387095270058e-05,
746
+ "loss": 1.0456,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.24,
751
+ "learning_rate": 1.785937464889027e-05,
752
+ "loss": 1.0026,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.24,
757
+ "learning_rate": 1.782106280320147e-05,
758
+ "loss": 0.903,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.24,
763
+ "learning_rate": 1.7782453017676025e-05,
764
+ "loss": 0.9958,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.24,
769
+ "learning_rate": 1.7743546763136187e-05,
770
+ "loss": 0.9393,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.24,
775
+ "learning_rate": 1.7704345521698057e-05,
776
+ "loss": 1.011,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.25,
781
+ "learning_rate": 1.766485078671514e-05,
782
+ "loss": 0.9844,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.25,
787
+ "learning_rate": 1.7625064062721414e-05,
788
+ "loss": 0.9095,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.25,
793
+ "learning_rate": 1.7584986865374084e-05,
794
+ "loss": 1.069,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.25,
799
+ "learning_rate": 1.754462072139578e-05,
800
+ "loss": 1.0297,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.25,
805
+ "learning_rate": 1.7503967168516426e-05,
806
+ "loss": 0.9506,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.26,
811
+ "learning_rate": 1.746302775541467e-05,
812
+ "loss": 1.0637,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.26,
817
+ "learning_rate": 1.7421804041658867e-05,
818
+ "loss": 0.9747,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.26,
823
+ "learning_rate": 1.738029759764767e-05,
824
+ "loss": 1.0646,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.26,
829
+ "learning_rate": 1.7338510004550225e-05,
830
+ "loss": 0.903,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.26,
835
+ "learning_rate": 1.7296442854245915e-05,
836
+ "loss": 1.0498,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.26,
841
+ "learning_rate": 1.7254097749263735e-05,
842
+ "loss": 0.9385,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.27,
847
+ "learning_rate": 1.721147630272123e-05,
848
+ "loss": 0.9959,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.27,
853
+ "learning_rate": 1.7168580138263064e-05,
854
+ "loss": 1.195,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.27,
859
+ "learning_rate": 1.7125410889999135e-05,
860
+ "loss": 0.9948,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.27,
865
+ "learning_rate": 1.7081970202442363e-05,
866
+ "loss": 0.9771,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.27,
871
+ "learning_rate": 1.703825973044602e-05,
872
+ "loss": 1.0914,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.28,
877
+ "learning_rate": 1.699428113914069e-05,
878
+ "loss": 1.1004,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.28,
883
+ "learning_rate": 1.695003610387084e-05,
884
+ "loss": 0.9474,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.28,
889
+ "learning_rate": 1.6905526310131e-05,
890
+ "loss": 0.9924,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.28,
895
+ "learning_rate": 1.686075345350156e-05,
896
+ "loss": 0.8992,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.28,
901
+ "learning_rate": 1.681571923958416e-05,
902
+ "loss": 1.0628,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.29,
907
+ "learning_rate": 1.6770425383936734e-05,
908
+ "loss": 0.9987,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.29,
913
+ "learning_rate": 1.6724873612008155e-05,
914
+ "loss": 0.9921,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.29,
919
+ "learning_rate": 1.6679065659072486e-05,
920
+ "loss": 0.9219,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.29,
925
+ "learning_rate": 1.6633003270162903e-05,
926
+ "loss": 1.0066,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.29,
931
+ "learning_rate": 1.6586688200005193e-05,
932
+ "loss": 0.9523,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.3,
937
+ "learning_rate": 1.654012221295093e-05,
938
+ "loss": 0.9338,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.3,
943
+ "learning_rate": 1.649330708291025e-05,
944
+ "loss": 1.1743,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.3,
949
+ "learning_rate": 1.6446244593284277e-05,
950
+ "loss": 0.9423,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.3,
955
+ "learning_rate": 1.6398936536897182e-05,
956
+ "loss": 1.0983,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.3,
961
+ "learning_rate": 1.6351384715927897e-05,
962
+ "loss": 1.0577,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.3,
967
+ "learning_rate": 1.6303590941841457e-05,
968
+ "loss": 1.0107,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.31,
973
+ "learning_rate": 1.625555703531998e-05,
974
+ "loss": 1.0051,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.31,
979
+ "learning_rate": 1.6207284826193334e-05,
980
+ "loss": 0.9868,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.31,
985
+ "learning_rate": 1.6158776153369406e-05,
986
+ "loss": 1.0838,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.31,
991
+ "learning_rate": 1.611003286476406e-05,
992
+ "loss": 0.9899,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.31,
997
+ "learning_rate": 1.6061056817230754e-05,
998
+ "loss": 1.0625,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.32,
1003
+ "learning_rate": 1.6011849876489777e-05,
1004
+ "loss": 1.0744,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.32,
1009
+ "learning_rate": 1.59624139170572e-05,
1010
+ "loss": 1.2099,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.32,
1015
+ "learning_rate": 1.5912750822173446e-05,
1016
+ "loss": 0.9299,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.32,
1021
+ "learning_rate": 1.5862862483731574e-05,
1022
+ "loss": 0.956,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.32,
1027
+ "learning_rate": 1.5812750802205187e-05,
1028
+ "loss": 1.04,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.33,
1033
+ "learning_rate": 1.576241768657604e-05,
1034
+ "loss": 1.2019,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.33,
1039
+ "learning_rate": 1.571186505426132e-05,
1040
+ "loss": 0.8532,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.33,
1045
+ "learning_rate": 1.56610948310406e-05,
1046
+ "loss": 0.9586,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.33,
1051
+ "learning_rate": 1.5610108950982494e-05,
1052
+ "loss": 1.1052,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.33,
1057
+ "learning_rate": 1.5558909356370944e-05,
1058
+ "loss": 1.1066,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.34,
1063
+ "learning_rate": 1.5507497997631267e-05,
1064
+ "loss": 0.9839,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.34,
1069
+ "learning_rate": 1.545587683325583e-05,
1070
+ "loss": 1.0389,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.34,
1075
+ "learning_rate": 1.540404782972946e-05,
1076
+ "loss": 0.9958,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.34,
1081
+ "learning_rate": 1.535201296145451e-05,
1082
+ "loss": 1.0568,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.34,
1087
+ "learning_rate": 1.529977421067566e-05,
1088
+ "loss": 0.9631,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.34,
1093
+ "learning_rate": 1.5247333567404407e-05,
1094
+ "loss": 1.0225,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.35,
1099
+ "learning_rate": 1.5194693029343249e-05,
1100
+ "loss": 1.0099,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.35,
1105
+ "learning_rate": 1.5141854601809583e-05,
1106
+ "loss": 0.931,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.35,
1111
+ "learning_rate": 1.5088820297659314e-05,
1112
+ "loss": 1.1087,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.35,
1117
+ "learning_rate": 1.5035592137210188e-05,
1118
+ "loss": 1.0107,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.35,
1123
+ "learning_rate": 1.4982172148164804e-05,
1124
+ "loss": 0.9999,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.36,
1129
+ "learning_rate": 1.4928562365533393e-05,
1130
+ "loss": 0.927,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.36,
1135
+ "learning_rate": 1.4874764831556285e-05,
1136
+ "loss": 0.9624,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.36,
1141
+ "learning_rate": 1.4820781595626116e-05,
1142
+ "loss": 0.9271,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.36,
1147
+ "learning_rate": 1.4766614714209748e-05,
1148
+ "loss": 1.0568,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.36,
1153
+ "learning_rate": 1.4712266250769932e-05,
1154
+ "loss": 0.9526,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.37,
1159
+ "learning_rate": 1.4657738275686711e-05,
1160
+ "loss": 0.9525,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.37,
1165
+ "learning_rate": 1.460303286617854e-05,
1166
+ "loss": 1.0047,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.37,
1171
+ "learning_rate": 1.4548152106223157e-05,
1172
+ "loss": 1.0844,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.37,
1177
+ "learning_rate": 1.4493098086478196e-05,
1178
+ "loss": 1.0315,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.37,
1183
+ "learning_rate": 1.4437872904201542e-05,
1184
+ "loss": 0.9944,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.38,
1189
+ "learning_rate": 1.4382478663171449e-05,
1190
+ "loss": 0.9606,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.38,
1195
+ "learning_rate": 1.4326917473606368e-05,
1196
+ "loss": 1.1036,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.38,
1201
+ "learning_rate": 1.4271191452084598e-05,
1202
+ "loss": 0.9404,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.38,
1207
+ "learning_rate": 1.4215302721463624e-05,
1208
+ "loss": 1.0934,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.38,
1213
+ "learning_rate": 1.4159253410799272e-05,
1214
+ "loss": 0.9587,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.38,
1219
+ "learning_rate": 1.4103045655264576e-05,
1220
+ "loss": 1.1526,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.39,
1225
+ "learning_rate": 1.4046681596068468e-05,
1226
+ "loss": 0.9883,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.39,
1231
+ "learning_rate": 1.3990163380374195e-05,
1232
+ "loss": 1.003,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.39,
1237
+ "learning_rate": 1.3933493161217521e-05,
1238
+ "loss": 0.9472,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.39,
1243
+ "learning_rate": 1.387667309742472e-05,
1244
+ "loss": 0.949,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.39,
1249
+ "learning_rate": 1.3819705353530322e-05,
1250
+ "loss": 1.0019,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.4,
1255
+ "learning_rate": 1.3762592099694666e-05,
1256
+ "loss": 1.1014,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.4,
1261
+ "learning_rate": 1.3705335511621229e-05,
1262
+ "loss": 1.0855,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.4,
1267
+ "learning_rate": 1.3647937770473739e-05,
1268
+ "loss": 1.0694,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.4,
1273
+ "learning_rate": 1.3590401062793084e-05,
1274
+ "loss": 0.9958,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.4,
1279
+ "learning_rate": 1.3532727580414018e-05,
1280
+ "loss": 1.0537,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.41,
1285
+ "learning_rate": 1.3474919520381673e-05,
1286
+ "loss": 1.0812,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.41,
1291
+ "learning_rate": 1.3416979084867851e-05,
1292
+ "loss": 0.9856,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.41,
1297
+ "learning_rate": 1.3358908481087133e-05,
1298
+ "loss": 0.9998,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.41,
1303
+ "learning_rate": 1.330070992121281e-05,
1304
+ "loss": 1.0072,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.41,
1309
+ "learning_rate": 1.3242385622292593e-05,
1310
+ "loss": 0.9522,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.42,
1315
+ "learning_rate": 1.3183937806164174e-05,
1316
+ "loss": 1.2482,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.42,
1321
+ "learning_rate": 1.3125368699370567e-05,
1322
+ "loss": 0.999,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.42,
1327
+ "learning_rate": 1.3066680533075312e-05,
1328
+ "loss": 0.9447,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.42,
1333
+ "learning_rate": 1.3007875542977448e-05,
1334
+ "loss": 1.0508,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.42,
1339
+ "learning_rate": 1.2948955969226384e-05,
1340
+ "loss": 1.1029,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.42,
1345
+ "learning_rate": 1.2889924056336531e-05,
1346
+ "loss": 1.0036,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.43,
1351
+ "learning_rate": 1.2830782053101807e-05,
1352
+ "loss": 1.0508,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.43,
1357
+ "learning_rate": 1.2771532212509974e-05,
1358
+ "loss": 1.1378,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.43,
1363
+ "learning_rate": 1.2712176791656807e-05,
1364
+ "loss": 1.0185,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.43,
1369
+ "learning_rate": 1.2652718051660122e-05,
1370
+ "loss": 1.1234,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.43,
1375
+ "learning_rate": 1.259315825757362e-05,
1376
+ "loss": 1.0036,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.44,
1381
+ "learning_rate": 1.2533499678300618e-05,
1382
+ "loss": 1.0508,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.44,
1387
+ "learning_rate": 1.2473744586507606e-05,
1388
+ "loss": 1.1163,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.44,
1393
+ "learning_rate": 1.2413895258537676e-05,
1394
+ "loss": 1.0512,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.44,
1399
+ "learning_rate": 1.2353953974323807e-05,
1400
+ "loss": 0.9337,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.44,
1405
+ "learning_rate": 1.2293923017302004e-05,
1406
+ "loss": 1.0446,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.45,
1411
+ "learning_rate": 1.223380467432432e-05,
1412
+ "loss": 0.9448,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.45,
1417
+ "learning_rate": 1.217360123557174e-05,
1418
+ "loss": 0.9856,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.45,
1423
+ "learning_rate": 1.211331499446693e-05,
1424
+ "loss": 0.9578,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.45,
1429
+ "learning_rate": 1.2052948247586872e-05,
1430
+ "loss": 0.8096,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.45,
1435
+ "learning_rate": 1.1992503294575385e-05,
1436
+ "loss": 0.9109,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.46,
1441
+ "learning_rate": 1.1931982438055506e-05,
1442
+ "loss": 1.014,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.46,
1447
+ "learning_rate": 1.1871387983541789e-05,
1448
+ "loss": 1.0129,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.46,
1453
+ "learning_rate": 1.1810722239352468e-05,
1454
+ "loss": 0.9497,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.46,
1459
+ "learning_rate": 1.1749987516521523e-05,
1460
+ "loss": 0.9578,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.46,
1465
+ "learning_rate": 1.1689186128710654e-05,
1466
+ "loss": 1.0114,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.46,
1471
+ "learning_rate": 1.1628320392121118e-05,
1472
+ "loss": 1.0635,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.47,
1477
+ "learning_rate": 1.156739262540552e-05,
1478
+ "loss": 0.9527,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.47,
1483
+ "learning_rate": 1.150640514957947e-05,
1484
+ "loss": 1.0139,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.47,
1489
+ "learning_rate": 1.1445360287933165e-05,
1490
+ "loss": 0.9126,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.47,
1495
+ "learning_rate": 1.1384260365942905e-05,
1496
+ "loss": 0.9579,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.47,
1501
+ "learning_rate": 1.1323107711182474e-05,
1502
+ "loss": 0.8946,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.48,
1507
+ "learning_rate": 1.1261904653234486e-05,
1508
+ "loss": 1.0059,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.48,
1513
+ "learning_rate": 1.1200653523601652e-05,
1514
+ "loss": 0.9798,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.48,
1519
+ "learning_rate": 1.1139356655617945e-05,
1520
+ "loss": 0.9536,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.48,
1525
+ "learning_rate": 1.1078016384359725e-05,
1526
+ "loss": 1.0603,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.48,
1531
+ "learning_rate": 1.1016635046556773e-05,
1532
+ "loss": 0.9435,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.49,
1537
+ "learning_rate": 1.0955214980503284e-05,
1538
+ "loss": 0.9584,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.49,
1543
+ "learning_rate": 1.0893758525968789e-05,
1544
+ "loss": 1.0198,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.49,
1549
+ "learning_rate": 1.0832268024109025e-05,
1550
+ "loss": 0.9559,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.49,
1555
+ "learning_rate": 1.0770745817376741e-05,
1556
+ "loss": 0.9561,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.49,
1561
+ "learning_rate": 1.0709194249432471e-05,
1562
+ "loss": 0.8537,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.5,
1567
+ "learning_rate": 1.0647615665055251e-05,
1568
+ "loss": 1.0372,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.5,
1573
+ "learning_rate": 1.0586012410053293e-05,
1574
+ "loss": 1.1696,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.5,
1579
+ "learning_rate": 1.0524386831174629e-05,
1580
+ "loss": 1.0219,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.5,
1585
+ "learning_rate": 1.0462741276017711e-05,
1586
+ "loss": 0.9949,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.5,
1591
+ "learning_rate": 1.0401078092941972e-05,
1592
+ "loss": 0.886,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.5,
1597
+ "learning_rate": 1.0339399630978373e-05,
1598
+ "loss": 1.2172,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.51,
1603
+ "learning_rate": 1.0277708239739925e-05,
1604
+ "loss": 0.9929,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.51,
1609
+ "learning_rate": 1.021600626933217e-05,
1610
+ "loss": 0.9677,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.51,
1615
+ "learning_rate": 1.0154296070263649e-05,
1616
+ "loss": 0.9792,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.51,
1621
+ "learning_rate": 1.0092579993356386e-05,
1622
+ "loss": 1.0348,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.51,
1627
+ "learning_rate": 1.0030860389656306e-05,
1628
+ "loss": 1.0046,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.52,
1633
+ "learning_rate": 9.969139610343696e-06,
1634
+ "loss": 1.1282,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.52,
1639
+ "learning_rate": 9.907420006643619e-06,
1640
+ "loss": 1.0213,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.52,
1645
+ "learning_rate": 9.845703929736351e-06,
1646
+ "loss": 1.0319,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.52,
1651
+ "learning_rate": 9.783993730667833e-06,
1652
+ "loss": 0.9653,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.52,
1657
+ "learning_rate": 9.722291760260077e-06,
1658
+ "loss": 1.1236,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.53,
1663
+ "learning_rate": 9.66060036902163e-06,
1664
+ "loss": 1.0243,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.53,
1669
+ "learning_rate": 9.598921907058033e-06,
1670
+ "loss": 0.9902,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.53,
1675
+ "learning_rate": 9.53725872398229e-06,
1676
+ "loss": 0.9274,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.53,
1681
+ "learning_rate": 9.475613168825374e-06,
1682
+ "loss": 1.215,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.53,
1687
+ "learning_rate": 9.41398758994671e-06,
1688
+ "loss": 0.9316,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.54,
1693
+ "learning_rate": 9.352384334944754e-06,
1694
+ "loss": 1.0422,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.54,
1699
+ "learning_rate": 9.290805750567532e-06,
1700
+ "loss": 1.1358,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.54,
1705
+ "learning_rate": 9.22925418262326e-06,
1706
+ "loss": 0.9926,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.54,
1711
+ "learning_rate": 9.167731975890977e-06,
1712
+ "loss": 0.9155,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.54,
1717
+ "learning_rate": 9.106241474031213e-06,
1718
+ "loss": 0.9292,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.54,
1723
+ "learning_rate": 9.04478501949672e-06,
1724
+ "loss": 0.9266,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.55,
1729
+ "learning_rate": 8.983364953443227e-06,
1730
+ "loss": 1.0313,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.55,
1735
+ "learning_rate": 8.921983615640277e-06,
1736
+ "loss": 1.0648,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.55,
1741
+ "learning_rate": 8.860643344382057e-06,
1742
+ "loss": 1.0713,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.55,
1747
+ "learning_rate": 8.799346476398351e-06,
1748
+ "loss": 0.8234,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.55,
1753
+ "learning_rate": 8.738095346765519e-06,
1754
+ "loss": 0.9235,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.56,
1759
+ "learning_rate": 8.676892288817531e-06,
1760
+ "loss": 1.0543,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.56,
1765
+ "learning_rate": 8.615739634057098e-06,
1766
+ "loss": 1.0305,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.56,
1771
+ "learning_rate": 8.554639712066837e-06,
1772
+ "loss": 1.0071,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.56,
1777
+ "learning_rate": 8.493594850420537e-06,
1778
+ "loss": 0.9926,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.56,
1783
+ "learning_rate": 8.432607374594484e-06,
1784
+ "loss": 0.9834,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.57,
1789
+ "learning_rate": 8.371679607878884e-06,
1790
+ "loss": 0.9733,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.57,
1795
+ "learning_rate": 8.310813871289349e-06,
1796
+ "loss": 1.0198,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.57,
1801
+ "learning_rate": 8.250012483478478e-06,
1802
+ "loss": 0.8944,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.57,
1807
+ "learning_rate": 8.189277760647537e-06,
1808
+ "loss": 1.0853,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.57,
1813
+ "learning_rate": 8.128612016458214e-06,
1814
+ "loss": 0.9688,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.58,
1819
+ "learning_rate": 8.0680175619445e-06,
1820
+ "loss": 1.0182,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.58,
1825
+ "learning_rate": 8.00749670542462e-06,
1826
+ "loss": 1.0056,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.58,
1831
+ "learning_rate": 7.947051752413131e-06,
1832
+ "loss": 1.0006,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.58,
1837
+ "learning_rate": 7.886685005533073e-06,
1838
+ "loss": 1.0194,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.58,
1843
+ "learning_rate": 7.826398764428261e-06,
1844
+ "loss": 0.9406,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.58,
1849
+ "learning_rate": 7.766195325675681e-06,
1850
+ "loss": 0.7382,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.59,
1855
+ "learning_rate": 7.706076982698e-06,
1856
+ "loss": 1.205,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.59,
1861
+ "learning_rate": 7.646046025676198e-06,
1862
+ "loss": 0.9854,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.59,
1867
+ "learning_rate": 7.586104741462326e-06,
1868
+ "loss": 0.9266,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.59,
1873
+ "learning_rate": 7.526255413492396e-06,
1874
+ "loss": 0.9455,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.59,
1879
+ "learning_rate": 7.4665003216993835e-06,
1880
+ "loss": 0.8424,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.6,
1885
+ "learning_rate": 7.40684174242638e-06,
1886
+ "loss": 1.0366,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.6,
1891
+ "learning_rate": 7.34728194833988e-06,
1892
+ "loss": 1.1087,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.6,
1897
+ "learning_rate": 7.287823208343192e-06,
1898
+ "loss": 1.0448,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.6,
1903
+ "learning_rate": 7.2284677874900285e-06,
1904
+ "loss": 1.0783,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.6,
1909
+ "learning_rate": 7.169217946898197e-06,
1910
+ "loss": 1.1065,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.61,
1915
+ "learning_rate": 7.110075943663473e-06,
1916
+ "loss": 0.9442,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.61,
1921
+ "learning_rate": 7.051044030773619e-06,
1922
+ "loss": 1.1005,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 0.61,
1927
+ "learning_rate": 6.9921244570225536e-06,
1928
+ "loss": 1.0234,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 0.61,
1933
+ "learning_rate": 6.933319466924693e-06,
1934
+ "loss": 1.0285,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 0.61,
1939
+ "learning_rate": 6.874631300629435e-06,
1940
+ "loss": 0.9707,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 0.62,
1945
+ "learning_rate": 6.81606219383583e-06,
1946
+ "loss": 0.9826,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 0.62,
1951
+ "learning_rate": 6.757614377707409e-06,
1952
+ "loss": 0.8997,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 0.62,
1957
+ "learning_rate": 6.699290078787193e-06,
1958
+ "loss": 1.0546,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 0.62,
1963
+ "learning_rate": 6.6410915189128675e-06,
1964
+ "loss": 1.138,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 0.62,
1969
+ "learning_rate": 6.5830209151321525e-06,
1970
+ "loss": 1.1151,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 0.62,
1975
+ "learning_rate": 6.525080479618331e-06,
1976
+ "loss": 1.1214,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 0.63,
1981
+ "learning_rate": 6.467272419585984e-06,
1982
+ "loss": 0.9674,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 0.63,
1987
+ "learning_rate": 6.40959893720692e-06,
1988
+ "loss": 1.0787,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 0.63,
1993
+ "learning_rate": 6.352062229526266e-06,
1994
+ "loss": 0.9351,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 0.63,
1999
+ "learning_rate": 6.294664488378777e-06,
2000
+ "loss": 1.0169,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 0.63,
2005
+ "learning_rate": 6.237407900305334e-06,
2006
+ "loss": 0.9301,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 0.64,
2011
+ "learning_rate": 6.18029464646968e-06,
2012
+ "loss": 0.9611,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 0.64,
2017
+ "learning_rate": 6.123326902575282e-06,
2018
+ "loss": 1.0809,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 0.64,
2023
+ "learning_rate": 6.06650683878248e-06,
2024
+ "loss": 1.0369,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 0.64,
2029
+ "learning_rate": 6.0098366196258095e-06,
2030
+ "loss": 0.9603,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 0.64,
2035
+ "learning_rate": 5.953318403931533e-06,
2036
+ "loss": 1.018,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 0.65,
2041
+ "learning_rate": 5.896954344735426e-06,
2042
+ "loss": 0.9963,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 0.65,
2047
+ "learning_rate": 5.840746589200732e-06,
2048
+ "loss": 0.9803,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 0.65,
2053
+ "learning_rate": 5.78469727853638e-06,
2054
+ "loss": 0.9496,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 0.65,
2059
+ "learning_rate": 5.728808547915405e-06,
2060
+ "loss": 0.9574,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 0.65,
2065
+ "learning_rate": 5.673082526393634e-06,
2066
+ "loss": 1.0413,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 0.66,
2071
+ "learning_rate": 5.617521336828556e-06,
2072
+ "loss": 1.0234,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 0.66,
2077
+ "learning_rate": 5.5621270957984575e-06,
2078
+ "loss": 0.9281,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 0.66,
2083
+ "learning_rate": 5.506901913521808e-06,
2084
+ "loss": 0.9141,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 0.66,
2089
+ "learning_rate": 5.451847893776845e-06,
2090
+ "loss": 1.0553,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 0.66,
2095
+ "learning_rate": 5.396967133821461e-06,
2096
+ "loss": 1.0136,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 0.66,
2101
+ "learning_rate": 5.342261724313292e-06,
2102
+ "loss": 0.8781,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 0.67,
2107
+ "learning_rate": 5.287733749230071e-06,
2108
+ "loss": 1.0005,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 0.67,
2113
+ "learning_rate": 5.233385285790258e-06,
2114
+ "loss": 1.0315,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 0.67,
2119
+ "learning_rate": 5.179218404373886e-06,
2120
+ "loss": 0.9875,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 0.67,
2125
+ "learning_rate": 5.125235168443714e-06,
2126
+ "loss": 1.0762,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 0.67,
2131
+ "learning_rate": 5.0714376344666095e-06,
2132
+ "loss": 0.9883,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 0.68,
2137
+ "learning_rate": 5.017827851835199e-06,
2138
+ "loss": 1.0402,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 0.68,
2143
+ "learning_rate": 4.964407862789817e-06,
2144
+ "loss": 0.9832,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 0.68,
2149
+ "learning_rate": 4.9111797023406884e-06,
2150
+ "loss": 1.064,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 0.68,
2155
+ "learning_rate": 4.8581453981904205e-06,
2156
+ "loss": 0.8565,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 0.68,
2161
+ "learning_rate": 4.8053069706567555e-06,
2162
+ "loss": 0.9622,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 0.69,
2167
+ "learning_rate": 4.752666432595596e-06,
2168
+ "loss": 0.9257,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 0.69,
2173
+ "learning_rate": 4.700225789324343e-06,
2174
+ "loss": 1.0264,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 0.69,
2179
+ "learning_rate": 4.647987038545496e-06,
2180
+ "loss": 0.9795,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 0.69,
2185
+ "learning_rate": 4.595952170270542e-06,
2186
+ "loss": 1.1062,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 0.69,
2191
+ "learning_rate": 4.5441231667441724e-06,
2192
+ "loss": 0.878,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 0.7,
2197
+ "learning_rate": 4.492502002368738e-06,
2198
+ "loss": 1.1202,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 0.7,
2203
+ "learning_rate": 4.441090643629057e-06,
2204
+ "loss": 0.9125,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 0.7,
2209
+ "learning_rate": 4.389891049017511e-06,
2210
+ "loss": 0.9245,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 0.7,
2215
+ "learning_rate": 4.3389051689594e-06,
2216
+ "loss": 0.8584,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 0.7,
2221
+ "learning_rate": 4.288134945738684e-06,
2222
+ "loss": 0.9324,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 0.7,
2227
+ "learning_rate": 4.2375823134239624e-06,
2228
+ "loss": 0.9386,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 0.71,
2233
+ "learning_rate": 4.1872491977948125e-06,
2234
+ "loss": 1.072,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 0.71,
2239
+ "learning_rate": 4.1371375162684255e-06,
2240
+ "loss": 1.0002,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 0.71,
2245
+ "learning_rate": 4.087249177826553e-06,
2246
+ "loss": 1.0169,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 0.71,
2251
+ "learning_rate": 4.037586082942805e-06,
2252
+ "loss": 0.9317,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 0.71,
2257
+ "learning_rate": 3.988150123510224e-06,
2258
+ "loss": 1.0668,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 0.72,
2263
+ "learning_rate": 3.9389431827692455e-06,
2264
+ "loss": 1.1167,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 0.72,
2269
+ "learning_rate": 3.88996713523594e-06,
2270
+ "loss": 0.9246,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 0.72,
2275
+ "learning_rate": 3.841223846630599e-06,
2276
+ "loss": 1.3171,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 0.72,
2281
+ "learning_rate": 3.7927151738066693e-06,
2282
+ "loss": 1.092,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 0.72,
2287
+ "learning_rate": 3.7444429646800206e-06,
2288
+ "loss": 0.9919,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 0.73,
2293
+ "learning_rate": 3.696409058158544e-06,
2294
+ "loss": 0.9269,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 0.73,
2299
+ "learning_rate": 3.6486152840721046e-06,
2300
+ "loss": 1.0242,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 0.73,
2305
+ "learning_rate": 3.601063463102823e-06,
2306
+ "loss": 1.0446,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 0.73,
2311
+ "learning_rate": 3.553755406715724e-06,
2312
+ "loss": 0.9833,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 0.73,
2317
+ "learning_rate": 3.506692917089751e-06,
2318
+ "loss": 1.0029,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 0.74,
2323
+ "learning_rate": 3.4598777870490717e-06,
2324
+ "loss": 0.9458,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 0.74,
2329
+ "learning_rate": 3.4133117999948086e-06,
2330
+ "loss": 1.0084,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 0.74,
2335
+ "learning_rate": 3.366996729837102e-06,
2336
+ "loss": 1.0454,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 0.74,
2341
+ "learning_rate": 3.320934340927513e-06,
2342
+ "loss": 1.0022,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 0.74,
2347
+ "learning_rate": 3.275126387991847e-06,
2348
+ "loss": 1.0804,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 0.74,
2353
+ "learning_rate": 3.229574616063268e-06,
2354
+ "loss": 1.0618,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 0.75,
2359
+ "learning_rate": 3.184280760415843e-06,
2360
+ "loss": 0.8866,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 0.75,
2365
+ "learning_rate": 3.1392465464984455e-06,
2366
+ "loss": 1.0266,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 0.75,
2371
+ "learning_rate": 3.094473689869002e-06,
2372
+ "loss": 1.0078,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 0.75,
2377
+ "learning_rate": 3.0499638961291623e-06,
2378
+ "loss": 0.9705,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 0.75,
2383
+ "learning_rate": 3.0057188608593146e-06,
2384
+ "loss": 0.9405,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 0.76,
2389
+ "learning_rate": 2.961740269553981e-06,
2390
+ "loss": 1.0097,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 0.76,
2395
+ "learning_rate": 2.9180297975576368e-06,
2396
+ "loss": 1.1537,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 0.76,
2401
+ "learning_rate": 2.8745891100008683e-06,
2402
+ "loss": 0.967,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 0.76,
2407
+ "learning_rate": 2.8314198617369403e-06,
2408
+ "loss": 0.8564,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 0.76,
2413
+ "learning_rate": 2.7885236972787733e-06,
2414
+ "loss": 0.919,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 0.77,
2419
+ "learning_rate": 2.7459022507362687e-06,
2420
+ "loss": 1.0236,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 0.77,
2425
+ "learning_rate": 2.7035571457540865e-06,
2426
+ "loss": 0.964,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 0.77,
2431
+ "learning_rate": 2.6614899954497797e-06,
2432
+ "loss": 1.0324,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 0.77,
2437
+ "learning_rate": 2.619702402352332e-06,
2438
+ "loss": 0.9101,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 0.77,
2443
+ "learning_rate": 2.5781959583411375e-06,
2444
+ "loss": 0.9287,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 0.78,
2449
+ "learning_rate": 2.536972244585331e-06,
2450
+ "loss": 1.0566,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 0.78,
2455
+ "learning_rate": 2.4960328314835746e-06,
2456
+ "loss": 0.9279,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 0.78,
2461
+ "learning_rate": 2.455379278604226e-06,
2462
+ "loss": 1.021,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 0.78,
2467
+ "learning_rate": 2.41501313462592e-06,
2468
+ "loss": 0.8296,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 0.78,
2473
+ "learning_rate": 2.3749359372785884e-06,
2474
+ "loss": 0.9509,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 0.78,
2479
+ "learning_rate": 2.3351492132848665e-06,
2480
+ "loss": 0.9372,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 0.79,
2485
+ "learning_rate": 2.295654478301942e-06,
2486
+ "loss": 1.0208,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 0.79,
2491
+ "learning_rate": 2.256453236863815e-06,
2492
+ "loss": 1.0768,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 0.79,
2497
+ "learning_rate": 2.217546982323977e-06,
2498
+ "loss": 1.0822,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 0.79,
2503
+ "learning_rate": 2.178937196798534e-06,
2504
+ "loss": 1.0618,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 0.79,
2509
+ "learning_rate": 2.140625351109733e-06,
2510
+ "loss": 1.0208,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 0.8,
2515
+ "learning_rate": 2.1026129047299436e-06,
2516
+ "loss": 0.8305,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 0.8,
2521
+ "learning_rate": 2.064901305726055e-06,
2522
+ "loss": 1.0297,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 0.8,
2527
+ "learning_rate": 2.0274919907043033e-06,
2528
+ "loss": 0.9256,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 0.8,
2533
+ "learning_rate": 1.990386384755565e-06,
2534
+ "loss": 0.9384,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 0.8,
2539
+ "learning_rate": 1.9535859014010525e-06,
2540
+ "loss": 0.9526,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 0.81,
2545
+ "learning_rate": 1.9170919425384695e-06,
2546
+ "loss": 1.1685,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 0.81,
2551
+ "learning_rate": 1.880905898388612e-06,
2552
+ "loss": 0.8731,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 0.81,
2557
+ "learning_rate": 1.8450291474423999e-06,
2558
+ "loss": 0.9038,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 0.81,
2563
+ "learning_rate": 1.8094630564083737e-06,
2564
+ "loss": 0.9914,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 0.81,
2569
+ "learning_rate": 1.7742089801606278e-06,
2570
+ "loss": 0.9217,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 0.82,
2575
+ "learning_rate": 1.7392682616871836e-06,
2576
+ "loss": 0.9949,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 0.82,
2581
+ "learning_rate": 1.7046422320388556e-06,
2582
+ "loss": 1.0348,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 0.82,
2587
+ "learning_rate": 1.6703322102785168e-06,
2588
+ "loss": 0.8882,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 0.82,
2593
+ "learning_rate": 1.6363395034308704e-06,
2594
+ "loss": 0.9555,
2595
+ "step": 431
2596
+ },
2597
+ {
2598
+ "epoch": 0.82,
2599
+ "learning_rate": 1.6026654064326553e-06,
2600
+ "loss": 1.0105,
2601
+ "step": 432
2602
+ },
2603
+ {
2604
+ "epoch": 0.82,
2605
+ "learning_rate": 1.5693112020833012e-06,
2606
+ "loss": 1.0233,
2607
+ "step": 433
2608
+ },
2609
+ {
2610
+ "epoch": 0.83,
2611
+ "learning_rate": 1.5362781609960853e-06,
2612
+ "loss": 0.8375,
2613
+ "step": 434
2614
+ },
2615
+ {
2616
+ "epoch": 0.83,
2617
+ "learning_rate": 1.5035675415497064e-06,
2618
+ "loss": 0.9687,
2619
+ "step": 435
2620
+ },
2621
+ {
2622
+ "epoch": 0.83,
2623
+ "learning_rate": 1.471180589840363e-06,
2624
+ "loss": 1.0763,
2625
+ "step": 436
2626
+ },
2627
+ {
2628
+ "epoch": 0.83,
2629
+ "learning_rate": 1.4391185396342787e-06,
2630
+ "loss": 0.8356,
2631
+ "step": 437
2632
+ },
2633
+ {
2634
+ "epoch": 0.83,
2635
+ "learning_rate": 1.4073826123206946e-06,
2636
+ "loss": 1.0506,
2637
+ "step": 438
2638
+ },
2639
+ {
2640
+ "epoch": 0.84,
2641
+ "learning_rate": 1.375974016865359e-06,
2642
+ "loss": 1.0625,
2643
+ "step": 439
2644
+ },
2645
+ {
2646
+ "epoch": 0.84,
2647
+ "learning_rate": 1.3448939497644508e-06,
2648
+ "loss": 0.9615,
2649
+ "step": 440
2650
+ },
2651
+ {
2652
+ "epoch": 0.84,
2653
+ "learning_rate": 1.3141435949990188e-06,
2654
+ "loss": 0.9799,
2655
+ "step": 441
2656
+ },
2657
+ {
2658
+ "epoch": 0.84,
2659
+ "learning_rate": 1.2837241239898669e-06,
2660
+ "loss": 1.0765,
2661
+ "step": 442
2662
+ },
2663
+ {
2664
+ "epoch": 0.84,
2665
+ "learning_rate": 1.253636695552931e-06,
2666
+ "loss": 1.0043,
2667
+ "step": 443
2668
+ },
2669
+ {
2670
+ "epoch": 0.85,
2671
+ "learning_rate": 1.2238824558551365e-06,
2672
+ "loss": 1.0117,
2673
+ "step": 444
2674
+ },
2675
+ {
2676
+ "epoch": 0.85,
2677
+ "learning_rate": 1.1944625383707377e-06,
2678
+ "loss": 0.8158,
2679
+ "step": 445
2680
+ },
2681
+ {
2682
+ "epoch": 0.85,
2683
+ "learning_rate": 1.165378063838133e-06,
2684
+ "loss": 0.9406,
2685
+ "step": 446
2686
+ },
2687
+ {
2688
+ "epoch": 0.85,
2689
+ "learning_rate": 1.1366301402171775e-06,
2690
+ "loss": 1.0382,
2691
+ "step": 447
2692
+ },
2693
+ {
2694
+ "epoch": 0.85,
2695
+ "learning_rate": 1.1082198626469687e-06,
2696
+ "loss": 0.9529,
2697
+ "step": 448
2698
+ },
2699
+ {
2700
+ "epoch": 0.86,
2701
+ "learning_rate": 1.080148313404127e-06,
2702
+ "loss": 0.9811,
2703
+ "step": 449
2704
+ },
2705
+ {
2706
+ "epoch": 0.86,
2707
+ "learning_rate": 1.0524165618615845e-06,
2708
+ "loss": 0.8795,
2709
+ "step": 450
2710
+ },
2711
+ {
2712
+ "epoch": 0.86,
2713
+ "learning_rate": 1.0250256644478196e-06,
2714
+ "loss": 0.9581,
2715
+ "step": 451
2716
+ },
2717
+ {
2718
+ "epoch": 0.86,
2719
+ "learning_rate": 9.979766646066368e-07,
2720
+ "loss": 0.9823,
2721
+ "step": 452
2722
+ },
2723
+ {
2724
+ "epoch": 0.86,
2725
+ "learning_rate": 9.71270592757404e-07,
2726
+ "loss": 0.9371,
2727
+ "step": 453
2728
+ },
2729
+ {
2730
+ "epoch": 0.86,
2731
+ "learning_rate": 9.449084662557984e-07,
2732
+ "loss": 0.9674,
2733
+ "step": 454
2734
+ },
2735
+ {
2736
+ "epoch": 0.87,
2737
+ "learning_rate": 9.188912893550694e-07,
2738
+ "loss": 0.9306,
2739
+ "step": 455
2740
+ },
2741
+ {
2742
+ "epoch": 0.87,
2743
+ "learning_rate": 8.932200531677537e-07,
2744
+ "loss": 1.1018,
2745
+ "step": 456
2746
+ },
2747
+ {
2748
+ "epoch": 0.87,
2749
+ "learning_rate": 8.678957356279372e-07,
2750
+ "loss": 0.8571,
2751
+ "step": 457
2752
+ },
2753
+ {
2754
+ "epoch": 0.87,
2755
+ "learning_rate": 8.429193014540015e-07,
2756
+ "loss": 1.0098,
2757
+ "step": 458
2758
+ },
2759
+ {
2760
+ "epoch": 0.87,
2761
+ "learning_rate": 8.182917021118664e-07,
2762
+ "loss": 0.8574,
2763
+ "step": 459
2764
+ },
2765
+ {
2766
+ "epoch": 0.88,
2767
+ "learning_rate": 7.940138757787507e-07,
2768
+ "loss": 1.0129,
2769
+ "step": 460
2770
+ },
2771
+ {
2772
+ "epoch": 0.88,
2773
+ "learning_rate": 7.700867473074225e-07,
2774
+ "loss": 1.109,
2775
+ "step": 461
2776
+ },
2777
+ {
2778
+ "epoch": 0.88,
2779
+ "learning_rate": 7.46511228190977e-07,
2780
+ "loss": 0.8979,
2781
+ "step": 462
2782
+ },
2783
+ {
2784
+ "epoch": 0.88,
2785
+ "learning_rate": 7.232882165281141e-07,
2786
+ "loss": 0.9884,
2787
+ "step": 463
2788
+ },
2789
+ {
2790
+ "epoch": 0.88,
2791
+ "learning_rate": 7.004185969889188e-07,
2792
+ "loss": 1.1263,
2793
+ "step": 464
2794
+ },
2795
+ {
2796
+ "epoch": 0.89,
2797
+ "learning_rate": 6.779032407811636e-07,
2798
+ "loss": 1.164,
2799
+ "step": 465
2800
+ },
2801
+ {
2802
+ "epoch": 0.89,
2803
+ "learning_rate": 6.557430056171221e-07,
2804
+ "loss": 0.8073,
2805
+ "step": 466
2806
+ },
2807
+ {
2808
+ "epoch": 0.89,
2809
+ "learning_rate": 6.339387356808912e-07,
2810
+ "loss": 1.0606,
2811
+ "step": 467
2812
+ },
2813
+ {
2814
+ "epoch": 0.89,
2815
+ "learning_rate": 6.124912615962341e-07,
2816
+ "loss": 1.0234,
2817
+ "step": 468
2818
+ },
2819
+ {
2820
+ "epoch": 0.89,
2821
+ "learning_rate": 5.914014003949408e-07,
2822
+ "loss": 1.0694,
2823
+ "step": 469
2824
+ },
2825
+ {
2826
+ "epoch": 0.9,
2827
+ "learning_rate": 5.706699554856965e-07,
2828
+ "loss": 1.0804,
2829
+ "step": 470
2830
+ },
2831
+ {
2832
+ "epoch": 0.9,
2833
+ "learning_rate": 5.502977166234857e-07,
2834
+ "loss": 0.9358,
2835
+ "step": 471
2836
+ },
2837
+ {
2838
+ "epoch": 0.9,
2839
+ "learning_rate": 5.302854598794938e-07,
2840
+ "loss": 1.0226,
2841
+ "step": 472
2842
+ },
2843
+ {
2844
+ "epoch": 0.9,
2845
+ "learning_rate": 5.106339476115596e-07,
2846
+ "loss": 1.0955,
2847
+ "step": 473
2848
+ },
2849
+ {
2850
+ "epoch": 0.9,
2851
+ "learning_rate": 4.913439284351207e-07,
2852
+ "loss": 0.9492,
2853
+ "step": 474
2854
+ },
2855
+ {
2856
+ "epoch": 0.9,
2857
+ "learning_rate": 4.7241613719469784e-07,
2858
+ "loss": 0.8924,
2859
+ "step": 475
2860
+ },
2861
+ {
2862
+ "epoch": 0.91,
2863
+ "learning_rate": 4.538512949359075e-07,
2864
+ "loss": 0.9072,
2865
+ "step": 476
2866
+ },
2867
+ {
2868
+ "epoch": 0.91,
2869
+ "learning_rate": 4.356501088779841e-07,
2870
+ "loss": 0.9692,
2871
+ "step": 477
2872
+ },
2873
+ {
2874
+ "epoch": 0.91,
2875
+ "learning_rate": 4.1781327238684775e-07,
2876
+ "loss": 0.9852,
2877
+ "step": 478
2878
+ },
2879
+ {
2880
+ "epoch": 0.91,
2881
+ "learning_rate": 4.003414649486892e-07,
2882
+ "loss": 0.8978,
2883
+ "step": 479
2884
+ },
2885
+ {
2886
+ "epoch": 0.91,
2887
+ "learning_rate": 3.832353521440768e-07,
2888
+ "loss": 0.9217,
2889
+ "step": 480
2890
+ },
2891
+ {
2892
+ "epoch": 0.92,
2893
+ "learning_rate": 3.6649558562261377e-07,
2894
+ "loss": 1.0179,
2895
+ "step": 481
2896
+ },
2897
+ {
2898
+ "epoch": 0.92,
2899
+ "learning_rate": 3.5012280307810344e-07,
2900
+ "loss": 0.8973,
2901
+ "step": 482
2902
+ },
2903
+ {
2904
+ "epoch": 0.92,
2905
+ "learning_rate": 3.341176282242653e-07,
2906
+ "loss": 0.9245,
2907
+ "step": 483
2908
+ },
2909
+ {
2910
+ "epoch": 0.92,
2911
+ "learning_rate": 3.184806707709698e-07,
2912
+ "loss": 0.8216,
2913
+ "step": 484
2914
+ },
2915
+ {
2916
+ "epoch": 0.92,
2917
+ "learning_rate": 3.0321252640100883e-07,
2918
+ "loss": 1.0511,
2919
+ "step": 485
2920
+ },
2921
+ {
2922
+ "epoch": 0.93,
2923
+ "learning_rate": 2.8831377674741203e-07,
2924
+ "loss": 0.9983,
2925
+ "step": 486
2926
+ },
2927
+ {
2928
+ "epoch": 0.93,
2929
+ "learning_rate": 2.737849893712841e-07,
2930
+ "loss": 0.945,
2931
+ "step": 487
2932
+ },
2933
+ {
2934
+ "epoch": 0.93,
2935
+ "learning_rate": 2.5962671774018234e-07,
2936
+ "loss": 1.023,
2937
+ "step": 488
2938
+ },
2939
+ {
2940
+ "epoch": 0.93,
2941
+ "learning_rate": 2.458395012070369e-07,
2942
+ "loss": 1.0748,
2943
+ "step": 489
2944
+ },
2945
+ {
2946
+ "epoch": 0.93,
2947
+ "learning_rate": 2.3242386498960267e-07,
2948
+ "loss": 0.9754,
2949
+ "step": 490
2950
+ },
2951
+ {
2952
+ "epoch": 0.94,
2953
+ "learning_rate": 2.1938032015044964e-07,
2954
+ "loss": 0.9531,
2955
+ "step": 491
2956
+ },
2957
+ {
2958
+ "epoch": 0.94,
2959
+ "learning_rate": 2.067093635774975e-07,
2960
+ "loss": 0.9747,
2961
+ "step": 492
2962
+ },
2963
+ {
2964
+ "epoch": 0.94,
2965
+ "learning_rate": 1.9441147796508408e-07,
2966
+ "loss": 1.0484,
2967
+ "step": 493
2968
+ },
2969
+ {
2970
+ "epoch": 0.94,
2971
+ "learning_rate": 1.8248713179557788e-07,
2972
+ "loss": 0.9075,
2973
+ "step": 494
2974
+ },
2975
+ {
2976
+ "epoch": 0.94,
2977
+ "learning_rate": 1.7093677932153218e-07,
2978
+ "loss": 1.0215,
2979
+ "step": 495
2980
+ },
2981
+ {
2982
+ "epoch": 0.94,
2983
+ "learning_rate": 1.5976086054838024e-07,
2984
+ "loss": 0.9313,
2985
+ "step": 496
2986
+ },
2987
+ {
2988
+ "epoch": 0.95,
2989
+ "learning_rate": 1.4895980121767627e-07,
2990
+ "loss": 0.9872,
2991
+ "step": 497
2992
+ },
2993
+ {
2994
+ "epoch": 0.95,
2995
+ "learning_rate": 1.3853401279086853e-07,
2996
+ "loss": 1.0439,
2997
+ "step": 498
2998
+ },
2999
+ {
3000
+ "epoch": 0.95,
3001
+ "learning_rate": 1.2848389243363514e-07,
3002
+ "loss": 0.8577,
3003
+ "step": 499
3004
+ },
3005
+ {
3006
+ "epoch": 0.95,
3007
+ "learning_rate": 1.1880982300074839e-07,
3008
+ "loss": 1.0613,
3009
+ "step": 500
3010
+ },
3011
+ {
3012
+ "epoch": 0.95,
3013
+ "learning_rate": 1.0951217302148986e-07,
3014
+ "loss": 1.048,
3015
+ "step": 501
3016
+ },
3017
+ {
3018
+ "epoch": 0.96,
3019
+ "learning_rate": 1.0059129668561707e-07,
3020
+ "loss": 0.9441,
3021
+ "step": 502
3022
+ },
3023
+ {
3024
+ "epoch": 0.96,
3025
+ "learning_rate": 9.204753382986097e-08,
3026
+ "loss": 0.9795,
3027
+ "step": 503
3028
+ },
3029
+ {
3030
+ "epoch": 0.96,
3031
+ "learning_rate": 8.388120992499083e-08,
3032
+ "loss": 1.0613,
3033
+ "step": 504
3034
+ },
3035
+ {
3036
+ "epoch": 0.96,
3037
+ "learning_rate": 7.609263606340622e-08,
3038
+ "loss": 0.8849,
3039
+ "step": 505
3040
+ },
3041
+ {
3042
+ "epoch": 0.96,
3043
+ "learning_rate": 6.868210894729333e-08,
3044
+ "loss": 0.9591,
3045
+ "step": 506
3046
+ },
3047
+ {
3048
+ "epoch": 0.97,
3049
+ "learning_rate": 6.164991087731831e-08,
3050
+ "loss": 0.898,
3051
+ "step": 507
3052
+ },
3053
+ {
3054
+ "epoch": 0.97,
3055
+ "learning_rate": 5.4996309741873755e-08,
3056
+ "loss": 0.8596,
3057
+ "step": 508
3058
+ },
3059
+ {
3060
+ "epoch": 0.97,
3061
+ "learning_rate": 4.8721559006873473e-08,
3062
+ "loss": 1.0341,
3063
+ "step": 509
3064
+ },
3065
+ {
3066
+ "epoch": 0.97,
3067
+ "learning_rate": 4.2825897706100237e-08,
3068
+ "loss": 1.0509,
3069
+ "step": 510
3070
+ },
3071
+ {
3072
+ "epoch": 0.97,
3073
+ "learning_rate": 3.730955043209083e-08,
3074
+ "loss": 1.0373,
3075
+ "step": 511
3076
+ },
3077
+ {
3078
+ "epoch": 0.98,
3079
+ "learning_rate": 3.2172727327594024e-08,
3080
+ "loss": 1.1891,
3081
+ "step": 512
3082
+ },
3083
+ {
3084
+ "epoch": 0.98,
3085
+ "learning_rate": 2.7415624077551383e-08,
3086
+ "loss": 0.9783,
3087
+ "step": 513
3088
+ },
3089
+ {
3090
+ "epoch": 0.98,
3091
+ "learning_rate": 2.3038421901651064e-08,
3092
+ "loss": 0.9968,
3093
+ "step": 514
3094
+ },
3095
+ {
3096
+ "epoch": 0.98,
3097
+ "learning_rate": 1.9041287547424404e-08,
3098
+ "loss": 0.7965,
3099
+ "step": 515
3100
+ },
3101
+ {
3102
+ "epoch": 0.98,
3103
+ "learning_rate": 1.5424373283889904e-08,
3104
+ "loss": 0.9412,
3105
+ "step": 516
3106
+ },
3107
+ {
3108
+ "epoch": 0.98,
3109
+ "learning_rate": 1.2187816895752324e-08,
3110
+ "loss": 1.0623,
3111
+ "step": 517
3112
+ },
3113
+ {
3114
+ "epoch": 0.99,
3115
+ "learning_rate": 9.3317416781602e-09,
3116
+ "loss": 1.092,
3117
+ "step": 518
3118
+ },
3119
+ {
3120
+ "epoch": 0.99,
3121
+ "learning_rate": 6.856256432000719e-09,
3122
+ "loss": 1.0168,
3123
+ "step": 519
3124
+ },
3125
+ {
3126
+ "epoch": 0.99,
3127
+ "learning_rate": 4.761455459760811e-09,
3128
+ "loss": 0.9015,
3129
+ "step": 520
3130
+ },
3131
+ {
3132
+ "epoch": 0.99,
3133
+ "learning_rate": 3.0474185619333573e-09,
3134
+ "loss": 0.891,
3135
+ "step": 521
3136
+ },
3137
+ {
3138
+ "epoch": 0.99,
3139
+ "learning_rate": 1.7142110339740669e-09,
3140
+ "loss": 1.0192,
3141
+ "step": 522
3142
+ },
3143
+ {
3144
+ "epoch": 1.0,
3145
+ "learning_rate": 7.618836638190186e-10,
3146
+ "loss": 0.9934,
3147
+ "step": 523
3148
+ },
3149
+ {
3150
+ "epoch": 1.0,
3151
+ "learning_rate": 1.904727299473219e-10,
3152
+ "loss": 0.9555,
3153
+ "step": 524
3154
+ },
3155
+ {
3156
+ "epoch": 1.0,
3157
+ "learning_rate": 0.0,
3158
+ "loss": 1.0071,
3159
+ "step": 525
3160
+ },
3161
+ {
3162
+ "epoch": 1.0,
3163
+ "step": 525,
3164
+ "total_flos": 408411124531200.0,
3165
+ "train_loss": 1.008456783521743,
3166
+ "train_runtime": 75047.9043,
3167
+ "train_samples_per_second": 0.336,
3168
+ "train_steps_per_second": 0.007
3169
+ }
3170
+ ],
3171
+ "logging_steps": 1.0,
3172
+ "max_steps": 525,
3173
+ "num_train_epochs": 1,
3174
+ "save_steps": 400,
3175
+ "total_flos": 408411124531200.0,
3176
+ "trial_name": null,
3177
+ "trial_params": null
3178
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13a8863c39c2acf6593998cb3e18152c9a1405c0379daeefefed8074235e9fa0
3
+ size 6648