File size: 1,477 Bytes
47d1fc6 23b91de 47d1fc6 23b91de 47d1fc6 23b91de 76b6c94 3a7711b 23b91de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: mit
datasets:
- tatsu-lab/alpaca
---
This repo contains a low-rank adapter for LLaMA-7b fit on the Stanford Alpaca dataset translated to Polish language.
### How to use (8-bit)
```python
import torch
from peft import PeftModel
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
tokenizer = LLaMATokenizer.from_pretrained("decapoda-research/llama-13b-hf")
model = LLaMAForCausalLM.from_pretrained(
"decapoda-research/llama-13b-hf",
load_in_8bit=True,
device_map="auto",
)
model = PeftModel.from_pretrained(model, "Aspik101/polish-alpaca7B-lora")
def get_answer(question, model_version = model):
PROMPT =f'''Poniżej znajduje się instrukcja opisująca zadanie. Napisz odpowiedź, która odpowiednio rozwiąrze zadanie.
### Instruction:
{question}
### Response:
'''
inputs = tokenizer(
PROMPT,
return_tensors="pt",
)
input_ids = inputs["input_ids"].cuda()
generation_config = GenerationConfig(
temperature=0.2,
top_p=0.95,
repetition_penalty=1.15,
)
print("Generating...")
generation_output = model_version.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=128,
)
sentences = " ".join([tokenizer.decode(s) for s in generation_output.sequences])
print(sentences.split("Response:\n")[1])
```
|