|
--- |
|
|
|
license: apache-2.0 |
|
inference: false |
|
|
|
--- |
|
|
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelWithLMHead, AutoModelForCausalLM |
|
import torch |
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
else : |
|
device = "cpu" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Ashishkr/grammar_correction") |
|
model = AutoModelForCausalLM.from_pretrained("Ashishkr/grammar_correction").to(device) |
|
|
|
input_query="what be the reason for everyone leave the company" |
|
query= "<|startoftext|> " + input_query + " ~~~" |
|
|
|
|
|
input_ids = tokenizer.encode(query.lower(), return_tensors='pt').to(device) |
|
sample_outputs = model.generate(input_ids, |
|
do_sample=True, |
|
num_beams=1, |
|
max_length=128, |
|
temperature=0.9, |
|
top_p= 0.7, |
|
top_k = 5, |
|
num_return_sequences=3) |
|
corrected_sentences = [] |
|
for i in range(len(sample_outputs)): |
|
r = tokenizer.decode(sample_outputs[i], skip_special_tokens=True).split('||')[0] |
|
r = r.split('~~~')[1] |
|
if r not in corrected_sentences: |
|
corrected_sentences.append(r) |
|
|
|
print(corrected_sentences) |
|
``` |
|
|