L-MChat-7b / README.md
Artples's picture
Update README.md
b7c25a0 verified
|
raw
history blame
4.91 kB
metadata
license: apache-2.0
tags:
  - merge
  - mergekit
  - Nexusflow/Starling-LM-7B-beta
  - FuseAI/FuseChat-7B-VaRM
base_model:
  - Nexusflow/Starling-LM-7B-beta
  - FuseAI/FuseChat-7B-VaRM
model-index:
  - name: L-MChat-7b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 65.61
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 84.59
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 65.44
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 50.94
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 81.37
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 69.45
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Artples/L-MChat-7b
          name: Open LLM Leaderboard

L-MChat-7b

L-MChat-7b is a merge of the following models:

Configuration

slices:
  - sources:
      - model: Nexusflow/Starling-LM-7B-beta
        layer_range: [0, 32]
      - model: FuseAI/FuseChat-7B-VaRM
        layer_range: [0, 32]
merge_method: slerp
base_model: FuseAI/FuseChat-7B-VaRM
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Artples/M-LChat-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

License

Apache 2.0 but you cannot use this model to directly compete with OpenAI.

How?

Usage of LazyMergekit.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 69.57
AI2 Reasoning Challenge (25-Shot) 65.61
HellaSwag (10-Shot) 84.59
MMLU (5-Shot) 65.44
TruthfulQA (0-shot) 50.94
Winogrande (5-shot) 81.37
GSM8k (5-shot) 69.45