Upload lyrics5.py
Browse files- lyrics5.py +133 -0
lyrics5.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Lyrics5.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1eEWnqPJ4BuKnMDL-kK9b2-vvMJ6_HTyS
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install keras
|
11 |
+
|
12 |
+
!pip install keras_preprocessing
|
13 |
+
import keras_preprocessing
|
14 |
+
|
15 |
+
!pip install pad_sequences
|
16 |
+
import pad_sequences
|
17 |
+
|
18 |
+
import pandas as pd
|
19 |
+
import numpy as np
|
20 |
+
import seaborn as sns
|
21 |
+
import matplotlib.pyplot as plt
|
22 |
+
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
|
23 |
+
import string, os
|
24 |
+
import tensorflow as tf
|
25 |
+
|
26 |
+
# keras module for building LSTM
|
27 |
+
from keras_preprocessing.sequence import pad_sequences
|
28 |
+
from tensorflow.keras.layers import Embedding, Dropout, LSTM, Dense, Bidirectional
|
29 |
+
from keras.preprocessing.text import Tokenizer
|
30 |
+
from keras.callbacks import EarlyStopping
|
31 |
+
from keras.models import Sequential
|
32 |
+
|
33 |
+
import matplotlib.pyplot as plt
|
34 |
+
import seaborn as sns
|
35 |
+
|
36 |
+
df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/lyrics-data.csv')
|
37 |
+
|
38 |
+
df.head()
|
39 |
+
|
40 |
+
df.drop(['ALink', 'SName','SLink'],axis=1,inplace=True)
|
41 |
+
|
42 |
+
df.shape
|
43 |
+
|
44 |
+
df['language'].value_counts()
|
45 |
+
|
46 |
+
df = df[df['language']=='en']
|
47 |
+
|
48 |
+
df = df[:350]
|
49 |
+
|
50 |
+
df.shape
|
51 |
+
|
52 |
+
df['Number_of_words'] = df['Lyric'].apply(lambda x:len(str(x).split()))
|
53 |
+
df.head()
|
54 |
+
|
55 |
+
df['Number_of_words'].describe()
|
56 |
+
|
57 |
+
import matplotlib.pyplot as plt
|
58 |
+
plt.style.use('ggplot')
|
59 |
+
plt.figure(figsize=(12,6))
|
60 |
+
sns.distplot(df['Number_of_words'],kde = False,color="red",bins=200)
|
61 |
+
plt.title("Frequency distribution of number of words for each text extracted", size=20)
|
62 |
+
|
63 |
+
tokenizer = Tokenizer()
|
64 |
+
tokenizer.fit_on_texts(df['Lyric'].astype(str).str.lower())
|
65 |
+
|
66 |
+
total_words = len(tokenizer.word_index)+1
|
67 |
+
tokenized_sentences = tokenizer.texts_to_sequences(df['Lyric'].astype(str))
|
68 |
+
tokenized_sentences[0]
|
69 |
+
|
70 |
+
input_sequences = list()
|
71 |
+
for i in tokenized_sentences:
|
72 |
+
for t in range(1, len(i)):
|
73 |
+
n_gram_sequence = i[:t+1]
|
74 |
+
input_sequences.append(n_gram_sequence)
|
75 |
+
|
76 |
+
# Pre padding
|
77 |
+
max_sequence_len = max([len(x) for x in input_sequences])
|
78 |
+
input_sequences = np.array(pad_sequences(input_sequences, maxlen=max_sequence_len, padding='pre'))
|
79 |
+
|
80 |
+
input_sequences[:10]
|
81 |
+
|
82 |
+
X, labels = input_sequences[:,:-1],input_sequences[:,-1]
|
83 |
+
y = tf.keras.utils.to_categorical(labels, num_classes=total_words)
|
84 |
+
|
85 |
+
model = Sequential()
|
86 |
+
model.add(Embedding(total_words, 40, input_length=max_sequence_len-1))
|
87 |
+
model.add(Bidirectional(LSTM(250)))
|
88 |
+
model.add(Dropout(0.1))
|
89 |
+
model.add(Dense(total_words, activation='softmax'))
|
90 |
+
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
|
91 |
+
earlystop = EarlyStopping(monitor='loss', min_delta=0, patience=3, verbose=0, mode='auto')
|
92 |
+
history = model.fit(X, y, epochs=10, verbose=1, callbacks=[earlystop])
|
93 |
+
|
94 |
+
plt.plot(history.history['accuracy'], label='train acc')
|
95 |
+
plt.legend()
|
96 |
+
plt.show()
|
97 |
+
plt.savefig('AccVal_acc')
|
98 |
+
|
99 |
+
def complete_this_song(seed_text, next_words):
|
100 |
+
for _ in range(next_words):
|
101 |
+
token_list = tokenizer.texts_to_sequences([seed_text])[0]
|
102 |
+
token_list = pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre')
|
103 |
+
#predicted = model.predict_classes(token_list, verbose=0)
|
104 |
+
predict_x=model.predict(token_list, verbose=0)
|
105 |
+
classes_x=np.argmax(predict_x,axis=1)
|
106 |
+
output_word = ""
|
107 |
+
for word, index in tokenizer.word_index.items():
|
108 |
+
if index == classes_x:
|
109 |
+
output_word = word
|
110 |
+
break
|
111 |
+
seed_text += " " + output_word
|
112 |
+
return seed_text
|
113 |
+
|
114 |
+
complete_this_song("the sky is blue", 40)
|
115 |
+
|
116 |
+
!pip install keras.models
|
117 |
+
|
118 |
+
from tensorflow.keras.models import load_model
|
119 |
+
model.save('/content/drive/MyDrive/Colab Notebooks/song_lyrics_generator.h5')
|
120 |
+
|
121 |
+
import tensorflow as tf
|
122 |
+
|
123 |
+
from tensorflow.keras.models import load_model
|
124 |
+
song_lyrics_generator= tf.keras.models.load_model('/content/drive/MyDrive/Colab Notebooks/song_lyrics_generator.h5')
|
125 |
+
|
126 |
+
!pip install gradio
|
127 |
+
import gradio as gr
|
128 |
+
|
129 |
+
interface = gr.Interface(fn= complete_this_song,
|
130 |
+
inputs= ['text', gr.inputs.Slider(0,250, label='No. of words')],
|
131 |
+
outputs='text')
|
132 |
+
|
133 |
+
interface.launch()
|