Upload lyrics_generation_rnn.py
Browse files- lyrics_generation_rnn.py +468 -0
lyrics_generation_rnn.py
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""lyrics_generation_rnn.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1MkBq8eqZoPqaVDczKmYhSThcV4r23z25
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install pickle
|
11 |
+
import pickle
|
12 |
+
!pip install string
|
13 |
+
import string
|
14 |
+
|
15 |
+
import tensorflow as tf
|
16 |
+
from string import punctuation
|
17 |
+
import numpy as np
|
18 |
+
import os
|
19 |
+
import time
|
20 |
+
import pickle
|
21 |
+
model_path='/content/drive/MyDrive/Colab Notebooks'
|
22 |
+
# create directory to store pickled files in
|
23 |
+
if not os.path.exists(f'/content/drive/MyDrive/Colab Notebooks/pkl'):
|
24 |
+
os.mkdir(f'/content/drive/MyDrive/Colab Notebooks/pkl')
|
25 |
+
|
26 |
+
# ----------------------------------------------------------------------
|
27 |
+
|
28 |
+
### LIMITING GPU MEMORY GROWTH ###
|
29 |
+
|
30 |
+
# get list of visible GPUs
|
31 |
+
gpus = tf.config.experimental.list_physical_devices('GPU')
|
32 |
+
|
33 |
+
if gpus: # if GPU(s) is detected
|
34 |
+
try: # try setting memory growth to true for all GPUs
|
35 |
+
for gpu in gpus:
|
36 |
+
tf.config.experimental.set_memory_growth(gpu, True) # enabling memory growth
|
37 |
+
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
|
38 |
+
print('\n', len(gpus), 'Physical GPUs,', len(logical_gpus), 'Logical GPU')
|
39 |
+
except RuntimeError as e:
|
40 |
+
# memory growth must be set before GPUs have been initialized
|
41 |
+
print('\n', e)
|
42 |
+
|
43 |
+
# ----------------------------------------------------------------------
|
44 |
+
|
45 |
+
### READ IN AND CLEAN THE LYRICS DATA ###
|
46 |
+
|
47 |
+
# ******TAKE IN USER INPUT FOR LYRICS (ARTIST NAME? FILE NAME?)******
|
48 |
+
|
49 |
+
# read in the lyrics text file
|
50 |
+
text = str(open('/content/drake.txt', 'r').read())
|
51 |
+
# artist_name = input('\nPlease ')
|
52 |
+
|
53 |
+
# make all letters lowercase and make line breaks into its own "word"
|
54 |
+
words = text.lower().replace('\n', ' \n ')
|
55 |
+
|
56 |
+
# remove punctuation
|
57 |
+
for punc in punctuation:
|
58 |
+
words = words.replace(punc, '')
|
59 |
+
|
60 |
+
# split the entire words string into a Python list of words
|
61 |
+
words = words.split(' ')
|
62 |
+
|
63 |
+
# obtain list of unique words across all lyrics
|
64 |
+
vocab = sorted(set(words))
|
65 |
+
print(f'\nThere are {len(vocab)} unique words in the lyrics file.')
|
66 |
+
|
67 |
+
# pickle the vocab file - will need it for the generation script
|
68 |
+
outfile = open(file='/content/drive/MyDrive/Colab Notebooks/pkl/vocab', mode='wb')
|
69 |
+
pickle.dump(vocab, outfile)
|
70 |
+
outfile.close()
|
71 |
+
|
72 |
+
# ----------------------------------------------------------------------
|
73 |
+
|
74 |
+
### WORD MAPPING ###
|
75 |
+
|
76 |
+
# map unique characters to indices
|
77 |
+
word2idx = {u:i for i, u in enumerate(vocab)}
|
78 |
+
|
79 |
+
# pickle this since it is needed in text generation
|
80 |
+
outfile = open(file='/content/drive/MyDrive/Colab Notebooks/pkl/word2idx', mode='wb')
|
81 |
+
pickle.dump(word2idx, outfile)
|
82 |
+
outfile.close()
|
83 |
+
|
84 |
+
# reverse the map - use this to specify an index to obtain a character
|
85 |
+
idx2word = np.array(vocab)
|
86 |
+
|
87 |
+
# pickle this since it is needed in text generation
|
88 |
+
outfile = open(file='/content/drive/MyDrive/Colab Notebooks/pkl/idx2word', mode='wb')
|
89 |
+
pickle.dump(idx2word, outfile)
|
90 |
+
outfile.close()
|
91 |
+
|
92 |
+
# entire text document represented in the above character-to-indices mapping
|
93 |
+
words_as_int = np.array([word2idx[c] for c in words])
|
94 |
+
|
95 |
+
# ----------------------------------------------------------------------
|
96 |
+
|
97 |
+
### CREATING TRAINING EXAMPLES & TARGETS ###
|
98 |
+
|
99 |
+
# ******TAKE IN USER INPUT FOR SEQUENCE LENGTH?******
|
100 |
+
|
101 |
+
# max sentence length (in number of words) desired for training
|
102 |
+
seq_length = 100
|
103 |
+
# seq_length = input('\nPlease enter a desired sequence length (in number of words) to train the model on: ')
|
104 |
+
examples_per_epoch = len(words) // (seq_length + 1)
|
105 |
+
|
106 |
+
# create training examples/targets
|
107 |
+
word_dataset = tf.data.Dataset.from_tensor_slices(words_as_int)
|
108 |
+
|
109 |
+
# data type of train examples/targets
|
110 |
+
print('\n', type(word_dataset))
|
111 |
+
|
112 |
+
# create sequence batches from the word_dataset
|
113 |
+
sequences = word_dataset.batch(seq_length + 1, drop_remainder=True)
|
114 |
+
print('\n', type(sequences))
|
115 |
+
|
116 |
+
# define the shifting (splitting) function
|
117 |
+
def split_input_target(chunk):
|
118 |
+
input_text = chunk[:-1] # up to but not including the last character
|
119 |
+
target_text = chunk[1:] # everything except for the firs tcharacter
|
120 |
+
return input_text, target_text
|
121 |
+
|
122 |
+
# apply the shifting to create input texts and target texts that comprise of our dataset
|
123 |
+
dataset = sequences.map(split_input_target)
|
124 |
+
|
125 |
+
# ----------------------------------------------------------------------
|
126 |
+
|
127 |
+
### CREATE TRAINING BATCHES ###
|
128 |
+
|
129 |
+
# batch size
|
130 |
+
BATCH_SIZE = 64
|
131 |
+
|
132 |
+
# buffer size to shuffle the dataset
|
133 |
+
# (TensorFlow data is designed to work with possibly infinite sequences,
|
134 |
+
# so it doesn't attempt to shuffle the entire sequence in memory. Instead,
|
135 |
+
# it maintains a buffer in which it shuffles elements)
|
136 |
+
BUFFER_SIZE = 10000
|
137 |
+
|
138 |
+
# create a dataset that has been shuffled and batched
|
139 |
+
dataset_sb = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE, drop_remainder=True)
|
140 |
+
|
141 |
+
# display batch dataset shapes and data types
|
142 |
+
print('\n', dataset_sb)
|
143 |
+
|
144 |
+
# ----------------------------------------------------------------------
|
145 |
+
|
146 |
+
### BUILDING THE RNN ###
|
147 |
+
|
148 |
+
# vocabulary length (number of unique words in dataset)
|
149 |
+
vocab_size = len(vocab)
|
150 |
+
|
151 |
+
# embedding dimension
|
152 |
+
embedding_dim = 256
|
153 |
+
|
154 |
+
# number of RNN units
|
155 |
+
rnn_units = 1024
|
156 |
+
|
157 |
+
# pickle model parameters - will need in the generation script
|
158 |
+
model_params = [vocab_size, embedding_dim, rnn_units]
|
159 |
+
outfile = open(file='/content/drive/MyDrive/Colab Notebooks/pkl/model_params', mode='wb')
|
160 |
+
pickle.dump(model_params, outfile)
|
161 |
+
outfile.close()
|
162 |
+
|
163 |
+
# helper function to quickly build the RNN model based on vocab size, embedding dimension, number of RNN units, and batch size
|
164 |
+
def build_model(vocab_size, embedding_dim, rnn_units, batch_size):
|
165 |
+
|
166 |
+
# initialize sequential model architecture
|
167 |
+
model = tf.keras.Sequential()
|
168 |
+
|
169 |
+
# add embedding layer
|
170 |
+
model.add(tf.keras.layers.Embedding(
|
171 |
+
input_dim = vocab_size,
|
172 |
+
output_dim = embedding_dim,
|
173 |
+
batch_input_shape=[batch_size, None]
|
174 |
+
))
|
175 |
+
|
176 |
+
# add recurrent layer
|
177 |
+
model.add(tf.keras.layers.GRU(
|
178 |
+
units = rnn_units,
|
179 |
+
return_sequences = True,
|
180 |
+
stateful = True,
|
181 |
+
recurrent_initializer = 'glorot_uniform'
|
182 |
+
))
|
183 |
+
|
184 |
+
# add dense layer
|
185 |
+
model.add(tf.keras.layers.Dense(units=vocab_size))
|
186 |
+
model_path= '/content/drive/MyDrive/Colab Notebooks'
|
187 |
+
|
188 |
+
def save_model(self, model_path):
|
189 |
+
# Save the model weights
|
190 |
+
self.save_weights(model_path)
|
191 |
+
print(f"Model saved to {model_path}")
|
192 |
+
return model
|
193 |
+
|
194 |
+
# build the model using the above helper function
|
195 |
+
rnn = build_model(
|
196 |
+
vocab_size = vocab_size,
|
197 |
+
embedding_dim = embedding_dim,
|
198 |
+
rnn_units = rnn_units,
|
199 |
+
batch_size = BATCH_SIZE
|
200 |
+
)
|
201 |
+
|
202 |
+
# check the shape of the output
|
203 |
+
for input_example_batch, target_example_batch in dataset_sb.take(1):
|
204 |
+
example_batch_predictions = rnn(input_example_batch)
|
205 |
+
print('\n', example_batch_predictions.shape, '# (batch_size, sequence_length, vocab_size)')
|
206 |
+
|
207 |
+
# model architecture summary
|
208 |
+
print('\n', rnn.summary(), '\n')
|
209 |
+
|
210 |
+
# ----------------------------------------------------------------------
|
211 |
+
|
212 |
+
### SET UP METRICS ###
|
213 |
+
|
214 |
+
# helper function to obtain the loss function
|
215 |
+
def loss(labels, logits):
|
216 |
+
return tf.keras.losses.sparse_categorical_crossentropy(labels, logits, from_logits=True)
|
217 |
+
|
218 |
+
# compile the model
|
219 |
+
rnn.compile(
|
220 |
+
optimizer = 'adam',
|
221 |
+
loss = loss,
|
222 |
+
metrics = ['accuracy']
|
223 |
+
)
|
224 |
+
|
225 |
+
# create directory where the checkpoints will be saved
|
226 |
+
checkpoint_dir = '/content/drive/MyDrive/Colab Notebooks/training_checkpoints'
|
227 |
+
|
228 |
+
# name of the checkpoint files
|
229 |
+
checkpoint_prefix = os.path.join(checkpoint_dir, 'checkpoint')
|
230 |
+
|
231 |
+
# create checkpoints-saving object
|
232 |
+
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
|
233 |
+
filepath = checkpoint_prefix,
|
234 |
+
monitor = 'loss',
|
235 |
+
save_best_only = True,
|
236 |
+
mode = 'min',
|
237 |
+
save_weights_only = True
|
238 |
+
)
|
239 |
+
|
240 |
+
# ----------------------------------------------------------------------
|
241 |
+
|
242 |
+
### MODEL TRAINING ###
|
243 |
+
|
244 |
+
# set number of desired epochs
|
245 |
+
EPOCHS = 200
|
246 |
+
|
247 |
+
# training!
|
248 |
+
history = rnn.fit(
|
249 |
+
x = dataset_sb,
|
250 |
+
epochs = EPOCHS,
|
251 |
+
callbacks = [checkpoint_callback]
|
252 |
+
)
|
253 |
+
|
254 |
+
build_model.save('/content/drive/MyDrive/Colab Notebooks')
|
255 |
+
|
256 |
+
import tensorflow as tf
|
257 |
+
from string import punctuation
|
258 |
+
import pickle
|
259 |
+
|
260 |
+
# ----------------------------------------------------------------------
|
261 |
+
|
262 |
+
### LIMITING GPU MEMORY GROWTH ###
|
263 |
+
|
264 |
+
# get list of visible GPUs
|
265 |
+
gpus = tf.config.experimental.list_physical_devices('GPU')
|
266 |
+
|
267 |
+
if gpus: # if GPU(s) is detected
|
268 |
+
try: # try setting memory growth to true for all GPUs
|
269 |
+
for gpu in gpus:
|
270 |
+
tf.config.experimental.set_memory_growth(gpu, True) # enabling memory growth
|
271 |
+
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
|
272 |
+
print('\n', len(gpus), 'Physical GPUs,', len(logical_gpus), 'Logical GPU')
|
273 |
+
except RuntimeError as e:
|
274 |
+
# memory growth must be set before GPUs have been initialized
|
275 |
+
print('\n', e)
|
276 |
+
|
277 |
+
# -------------------------------------------------------------------------
|
278 |
+
|
279 |
+
### MODEL BUILDING FUNCTION FROM TRAINING SCRIPT ###
|
280 |
+
|
281 |
+
# helper function to quickly build the RNN model based on vocab size, embedding dimension, number of RNN units, and batch size
|
282 |
+
def build_model(vocab_size, embedding_dim, rnn_units, batch_size):
|
283 |
+
model = tf.keras.Sequential()
|
284 |
+
|
285 |
+
model.add(tf.keras.layers.Embedding(
|
286 |
+
input_dim = vocab_size,
|
287 |
+
output_dim = embedding_dim,
|
288 |
+
batch_input_shape=[batch_size, None]
|
289 |
+
))
|
290 |
+
|
291 |
+
model.add(tf.keras.layers.GRU(
|
292 |
+
units = rnn_units,
|
293 |
+
return_sequences = True,
|
294 |
+
stateful = True,
|
295 |
+
recurrent_initializer = 'glorot_uniform'
|
296 |
+
))
|
297 |
+
|
298 |
+
model.add(tf.keras.layers.Dense(units=vocab_size))
|
299 |
+
|
300 |
+
model_path= '/content/drive/MyDrive/Colab Notebooks'
|
301 |
+
|
302 |
+
def save_model(self, model_path):
|
303 |
+
# Save the model weights
|
304 |
+
self.save_weights(model_path)
|
305 |
+
print(f"Model saved to {model_path}")
|
306 |
+
|
307 |
+
return model
|
308 |
+
|
309 |
+
# -------------------------------------------------------------------------
|
310 |
+
|
311 |
+
### INITIATE MODEL AND LOAD IN WEIGHTS FROM CHECKPOINT ###
|
312 |
+
|
313 |
+
# unpickle the model parameters from the training script
|
314 |
+
infile = open(file='pkl/model_params', mode='rb')
|
315 |
+
vocab_size, embedding_dim, rnn_units = pickle.load(infile)
|
316 |
+
infile.close()
|
317 |
+
|
318 |
+
# initiate new model instance
|
319 |
+
rnn_cp = build_model(vocab_size, embedding_dim, rnn_units, batch_size=1)
|
320 |
+
|
321 |
+
# load saved weights from checkpoint into new model instance
|
322 |
+
rnn_cp.load_weights(tf.train.latest_checkpoint('./training_checkpoints'))
|
323 |
+
|
324 |
+
# build the model with a new input shape
|
325 |
+
rnn_cp.build(tf.TensorShape([1, None]))
|
326 |
+
|
327 |
+
# -------------------------------------------------------------------------
|
328 |
+
|
329 |
+
### TEXT PREDICTION FUNCTION ###
|
330 |
+
|
331 |
+
# unpickle the index-word files that were pickled from the training script
|
332 |
+
infile = open(file='pkl/word2idx', mode='rb')
|
333 |
+
word2idx = pickle.load(infile)
|
334 |
+
infile.close()
|
335 |
+
infile = open(file='pkl/idx2word', mode='rb')
|
336 |
+
idx2word = pickle.load(infile)
|
337 |
+
infile.close()
|
338 |
+
#build_model.is_valid():
|
339 |
+
#build_model.save('/content/drive/MyDrive/Colab Notebooks')
|
340 |
+
|
341 |
+
def generate_text(model, start_string, num_generate=500, temperature=1.0):
|
342 |
+
|
343 |
+
# num of chars to generate
|
344 |
+
num_generate = num_generate
|
345 |
+
|
346 |
+
# vectorizing the start string to numbers
|
347 |
+
input_eval = [word2idx[s] for s in start_string]
|
348 |
+
input_eval = tf.expand_dims(input=input_eval, axis=0) # returns a tensor with a length-1 axis inserted at index `axis`
|
349 |
+
|
350 |
+
# empty string to store results
|
351 |
+
text_generated = list()
|
352 |
+
|
353 |
+
# "temperature"
|
354 |
+
# low temperature results in more predictable text,
|
355 |
+
# high temperature results in more surprising text.
|
356 |
+
# feel free to experiment with this parameter
|
357 |
+
temperature = 1.0
|
358 |
+
|
359 |
+
# the batch size was defined when we loaded model weights from training
|
360 |
+
|
361 |
+
model.reset_states()
|
362 |
+
for i in range(num_generate):
|
363 |
+
predictions = model(input_eval)
|
364 |
+
|
365 |
+
# remove the batch dimension
|
366 |
+
predictions = tf.squeeze(predictions, 0)
|
367 |
+
|
368 |
+
# use a categorical distribution to predict the character returned by the model
|
369 |
+
preidctions = predictions / temperature
|
370 |
+
predicted_id = tf.random.categorical(predictions, num_samples=1)[-1, 0].numpy()
|
371 |
+
|
372 |
+
# pass the predicted character as the next input to the model along with the previous hidden state
|
373 |
+
input_eval = tf.expand_dims([predicted_id], 0)
|
374 |
+
|
375 |
+
text_generated.append(idx2word[predicted_id])
|
376 |
+
|
377 |
+
return(' '.join(start_string + text_generated))
|
378 |
+
|
379 |
+
# -------------------------------------------------------------------------
|
380 |
+
|
381 |
+
### TAKE IN INPUT STRING AND CHECK IF ALL WORDS IN IT ARE IN THE VOCABULARY ###
|
382 |
+
# (this is a requirement for text generation)
|
383 |
+
|
384 |
+
# unpickle the vocabulary file that was pickled from the training script
|
385 |
+
infile = open(file='pkl/vocab', mode='rb')
|
386 |
+
vocab = pickle.load(infile)
|
387 |
+
infile.close()
|
388 |
+
|
389 |
+
# initialize the checking loop
|
390 |
+
check = True
|
391 |
+
|
392 |
+
while check:
|
393 |
+
|
394 |
+
# take in user input for starting lyrics
|
395 |
+
start_string = input('\nPlease input some text to initiate the lyrics generation (caps insensitive):\n')
|
396 |
+
|
397 |
+
# lowercase
|
398 |
+
start_string = start_string.lower()
|
399 |
+
|
400 |
+
# remove punctuation
|
401 |
+
for punc in punctuation:
|
402 |
+
start_string = start_string.replace(punc, '')
|
403 |
+
|
404 |
+
# create a list where each element is one word from the start string
|
405 |
+
start_string = start_string.split(' ')
|
406 |
+
|
407 |
+
# store all words that aren't in the vocabulary
|
408 |
+
non_vocab = []
|
409 |
+
|
410 |
+
# for every word in the start string
|
411 |
+
for word in start_string:
|
412 |
+
|
413 |
+
# if the word is NOT in the vocabulary
|
414 |
+
if word not in vocab:
|
415 |
+
|
416 |
+
# add the word to the non_vocab variable
|
417 |
+
non_vocab.append(word)
|
418 |
+
|
419 |
+
# if the non-vocab list is empty (i.e. all words in the start string are in the vocab)
|
420 |
+
if non_vocab == []:
|
421 |
+
|
422 |
+
# break out of the loop
|
423 |
+
check = False
|
424 |
+
|
425 |
+
# if there are words not in the vocabulary
|
426 |
+
else:
|
427 |
+
|
428 |
+
# print what those words are
|
429 |
+
print(f'\nWords in the input text not present in the vocabulary are: {", ".join(non_vocab)}')
|
430 |
+
print('\nAll input words must be in the vocabulary.')
|
431 |
+
|
432 |
+
# -------------------------------------------------------------------------
|
433 |
+
|
434 |
+
### TEXT GENERATION ###
|
435 |
+
|
436 |
+
# text generation!
|
437 |
+
print('\n', generate_text(rnn_cp, start_string=start_string, num_generate=250))
|
438 |
+
|
439 |
+
### SAVE TO FILE??? ###
|
440 |
+
|
441 |
+
# -------------------------------------------------------------------------
|
442 |
+
|
443 |
+
# -------------------------------------------------------------------------
|
444 |
+
|
445 |
+
|
446 |
+
|
447 |
+
build_model.save('/content/drive/MyDrive/Colab Notebooks')
|
448 |
+
|
449 |
+
model = build_model
|
450 |
+
|
451 |
+
"""import tensorflow as tf
|
452 |
+
build_model.state_dict()
|
453 |
+
# Assuming you have a trained model named 'model'
|
454 |
+
model = ...
|
455 |
+
|
456 |
+
# Define the path to save the model
|
457 |
+
model_path = 'path_to_save_model'
|
458 |
+
|
459 |
+
# Save the entire model (architecture, weights, and optimizer state)
|
460 |
+
model.save(model_path)
|
461 |
+
|
462 |
+
[link text](https:// [link text](https://))# Alternatively, you can save only the model weights
|
463 |
+
model.save_weights('path_to_save_weights')
|
464 |
+
|
465 |
+
# You can also save the model in a format optimized for serving
|
466 |
+
tf.saved_model.save(model, 'path_for_serving')
|
467 |
+
|
468 |
+
"""
|