File size: 2,328 Bytes
df0a99a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d64bc8
 
 
 
 
df0a99a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d64bc8
 
 
 
 
 
 
 
df0a99a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: tes1-UASNLP2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tes1-UASNLP2

This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3413
- Accuracy: 0.8705
- Precision: 0.8858
- Recall: 0.8803
- F1: 0.8830

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.4596        | 1.2121 | 100  | 0.3631          | 0.8554   | 0.8767    | 0.8605 | 0.8685 |
| 0.254         | 2.4242 | 200  | 0.3413          | 0.8705   | 0.8858    | 0.8803 | 0.8830 |
| 0.1674        | 3.6364 | 300  | 0.3847          | 0.8793   | 0.8758    | 0.9118 | 0.8934 |
| 0.0968        | 4.8485 | 400  | 0.4927          | 0.8759   | 0.9145    | 0.8564 | 0.8845 |
| 0.0614        | 6.0606 | 500  | 0.5308          | 0.8721   | 0.8748    | 0.8981 | 0.8863 |
| 0.0418        | 7.2727 | 600  | 0.6098          | 0.8759   | 0.8988    | 0.8748 | 0.8867 |
| 0.0296        | 8.4848 | 700  | 0.6507          | 0.8751   | 0.8910    | 0.8830 | 0.8870 |
| 0.0183        | 9.6970 | 800  | 0.6822          | 0.8789   | 0.8944    | 0.8865 | 0.8904 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Tokenizers 0.19.1