File size: 12,949 Bytes
0b83efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: Vehicle_Detection_Model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Vehicle_Detection_Model

This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7220
- Map: 0.0875
- Map 50: 0.1634
- Map 75: 0.084
- Map Small: 0.355
- Map Medium: 0.1423
- Map Large: 0.0499
- Mar 1: 0.1462
- Mar 10: 0.2602
- Mar 100: 0.2709
- Mar Small: 0.5
- Mar Medium: 0.4013
- Mar Large: 0.3
- Map Camping car: 0.0039
- Mar 100 Camping car: 0.35
- Map Car: 0.4971
- Mar 100 Car: 0.6256
- Map Other: 0.0
- Mar 100 Other: 0.0
- Map Pickup: 0.0239
- Mar 100 Pickup: 0.65
- Map Truck: 0.0
- Mar 100 Truck: 0.0
- Map Van: 0.0
- Mar 100 Van: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Camping car | Mar 100 Camping car | Map Car | Mar 100 Car | Map Other | Mar 100 Other | Map Pickup | Mar 100 Pickup | Map Truck | Mar 100 Truck | Map Van | Mar 100 Van |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:---------------:|:-------------------:|:-------:|:-----------:|:---------:|:-------------:|:----------:|:--------------:|:---------:|:-------------:|:-------:|:-----------:|
| No log        | 1.0   | 232  | 1.3186          | 0.0125 | 0.0292 | 0.0085 | 0.0059    | 0.0197     | 0.004     | 0.0182 | 0.0467 | 0.0903  | 0.0556    | 0.1396     | 0.1       | 0.0             | 0.0                 | 0.0751  | 0.5416      | 0.0       | 0.0           | 0.0        | 0.0            | 0.0       | 0.0           | 0.0     | 0.0         |
| No log        | 2.0   | 464  | 1.0802          | 0.0375 | 0.0832 | 0.0283 | 0.263     | 0.0585     | 0.0102    | 0.0254 | 0.0734 | 0.0865  | 0.2667    | 0.1317     | 0.15      | 0.0             | 0.0                 | 0.2249  | 0.5189      | 0.0       | 0.0           | 0.0        | 0.0            | 0.0       | 0.0           | 0.0     | 0.0         |
| 1.4746        | 3.0   | 696  | 0.9804          | 0.0608 | 0.125  | 0.0483 | 0.2948    | 0.0938     | 0.075     | 0.0305 | 0.0821 | 0.0903  | 0.3556    | 0.1372     | 0.075     | 0.0             | 0.0                 | 0.3646  | 0.5416      | 0.0       | 0.0           | 0.0        | 0.0            | 0.0       | 0.0           | 0.0     | 0.0         |
| 1.4746        | 4.0   | 928  | 0.9139          | 0.0712 | 0.1426 | 0.0577 | 0.2232    | 0.1091     | 0.125     | 0.0315 | 0.085  | 0.0959  | 0.3333    | 0.1459     | 0.125     | 0.0             | 0.0                 | 0.4274  | 0.5754      | 0.0       | 0.0           | 0.0        | 0.0            | 0.0       | 0.0           | 0.0     | 0.0         |
| 1.0134        | 5.0   | 1160 | 0.9581          | 0.0637 | 0.1367 | 0.0426 | 0.0804    | 0.0993     | 0.075     | 0.0289 | 0.0771 | 0.0846  | 0.2556    | 0.1292     | 0.075     | 0.0             | 0.0                 | 0.3823  | 0.5078      | 0.0       | 0.0           | 0.0        | 0.0            | 0.0       | 0.0           | 0.0     | 0.0         |
| 1.0134        | 6.0   | 1392 | 0.8830          | 0.0743 | 0.1476 | 0.0645 | 0.2171    | 0.1139     | 0.075     | 0.0345 | 0.0862 | 0.0967  | 0.3222    | 0.1474     | 0.075     | 0.0             | 0.0                 | 0.4456  | 0.5801      | 0.0       | 0.0           | 0.0        | 0.0            | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.9133        | 7.0   | 1624 | 0.8645          | 0.0716 | 0.147  | 0.0571 | 0.2156    | 0.1099     | 0.0752    | 0.0329 | 0.0853 | 0.0966  | 0.3111    | 0.147      | 0.175     | 0.0             | 0.0                 | 0.4296  | 0.5797      | 0.0       | 0.0           | 0.0        | 0.0            | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.9133        | 8.0   | 1856 | 0.8776          | 0.0676 | 0.1478 | 0.0445 | 0.2225    | 0.1032     | 0.1254    | 0.0317 | 0.0811 | 0.0934  | 0.3333    | 0.1417     | 0.2       | 0.0             | 0.0                 | 0.4056  | 0.5601      | 0.0       | 0.0           | 0.0        | 0.0            | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.8617        | 9.0   | 2088 | 0.8556          | 0.0754 | 0.1506 | 0.0638 | 0.252     | 0.1153     | 0.1254    | 0.0323 | 0.0881 | 0.0999  | 0.3667    | 0.1517     | 0.2       | 0.0             | 0.0                 | 0.4525  | 0.5996      | 0.0       | 0.0           | 0.0        | 0.0            | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.8617        | 10.0  | 2320 | 0.7552          | 0.0821 | 0.1528 | 0.0803 | 0.361     | 0.1248     | 0.1257    | 0.0347 | 0.1119 | 0.1312  | 0.5222    | 0.1747     | 0.2625    | 0.0             | 0.0                 | 0.4921  | 0.6206      | 0.0       | 0.0           | 0.0004     | 0.1667         | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.8182        | 11.0  | 2552 | 0.8211          | 0.0741 | 0.1525 | 0.0627 | 0.3014    | 0.114      | 0.0503    | 0.0381 | 0.1098 | 0.1544  | 0.4222    | 0.2641     | 0.125     | 0.0001          | 0.1                 | 0.4422  | 0.5762      | 0.0       | 0.0           | 0.002      | 0.25           | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.8182        | 12.0  | 2784 | 0.8140          | 0.0734 | 0.1486 | 0.056  | 0.214     | 0.1129     | 0.0506    | 0.0451 | 0.1066 | 0.1184  | 0.3778    | 0.1941     | 0.125     | 0.0             | 0.0                 | 0.4382  | 0.594       | 0.0       | 0.0           | 0.0024     | 0.1167         | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.8079        | 13.0  | 3016 | 0.7473          | 0.0848 | 0.1559 | 0.0789 | 0.2794    | 0.1307     | 0.0779    | 0.078  | 0.16   | 0.1727  | 0.5       | 0.2668     | 0.1625    | 0.0             | 0.0                 | 0.4983  | 0.6363      | 0.0       | 0.0           | 0.0103     | 0.4            | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.8079        | 14.0  | 3248 | 0.8514          | 0.0706 | 0.1541 | 0.0485 | 0.3034    | 0.1071     | 0.1046    | 0.079  | 0.1726 | 0.1862  | 0.4222    | 0.2556     | 0.2875    | 0.0             | 0.0                 | 0.4149  | 0.5669      | 0.0       | 0.0           | 0.0089     | 0.55           | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.8079        | 15.0  | 3480 | 0.7615          | 0.0814 | 0.1579 | 0.0709 | 0.3673    | 0.1229     | 0.0691    | 0.0929 | 0.161  | 0.1719  | 0.4444    | 0.2177     | 0.3125    | 0.0             | 0.0                 | 0.4774  | 0.6146      | 0.0       | 0.0           | 0.0109     | 0.4167         | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.7672        | 16.0  | 3712 | 0.7819          | 0.0786 | 0.1555 | 0.0732 | 0.2782    | 0.1182     | 0.1589    | 0.103  | 0.1757 | 0.1878  | 0.3556    | 0.2629     | 0.325     | 0.0             | 0.0                 | 0.4557  | 0.5936      | 0.0       | 0.0           | 0.0159     | 0.5333         | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.7672        | 17.0  | 3944 | 0.7723          | 0.0807 | 0.1551 | 0.0757 | 0.3302    | 0.1227     | 0.0687    | 0.0812 | 0.1762 | 0.1939  | 0.4       | 0.274      | 0.3       | 0.0             | 0.0                 | 0.4724  | 0.6135      | 0.0       | 0.0           | 0.0121     | 0.55           | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.744         | 18.0  | 4176 | 0.7838          | 0.0784 | 0.1535 | 0.0709 | 0.3594    | 0.1201     | 0.0564    | 0.0865 | 0.1865 | 0.2497  | 0.4       | 0.3637     | 0.325     | 0.0009          | 0.3                 | 0.4503  | 0.5982      | 0.0       | 0.0           | 0.0191     | 0.6            | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.744         | 19.0  | 4408 | 0.7714          | 0.0763 | 0.1552 | 0.0625 | 0.2732    | 0.116      | 0.0675    | 0.0605 | 0.1696 | 0.1824  | 0.4111    | 0.2502     | 0.3       | 0.0             | 0.0                 | 0.4461  | 0.5943      | 0.0       | 0.0           | 0.0115     | 0.5            | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.7219        | 20.0  | 4640 | 0.7403          | 0.0808 | 0.1543 | 0.0686 | 0.2968    | 0.1251     | 0.0665    | 0.0984 | 0.1889 | 0.1997  | 0.5111    | 0.2859     | 0.3       | 0.0             | 0.0                 | 0.4738  | 0.6146      | 0.0       | 0.0           | 0.0109     | 0.5833         | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.7219        | 21.0  | 4872 | 0.7421          | 0.0839 | 0.1599 | 0.0803 | 0.2862    | 0.2166     | 0.0451    | 0.1396 | 0.2437 | 0.257   | 0.5       | 0.3782     | 0.275     | 0.0123          | 0.4                 | 0.4792  | 0.6089      | 0.0       | 0.0           | 0.0118     | 0.5333         | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.6955        | 22.0  | 5104 | 0.7459          | 0.0844 | 0.1619 | 0.0753 | 0.3116    | 0.1475     | 0.0462    | 0.1395 | 0.2253 | 0.2342  | 0.4333    | 0.3404     | 0.2875    | 0.0068          | 0.25                | 0.4815  | 0.6053      | 0.0       | 0.0           | 0.018      | 0.55           | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.6955        | 23.0  | 5336 | 0.7439          | 0.0844 | 0.1594 | 0.0782 | 0.3246    | 0.1335     | 0.0682    | 0.1559 | 0.2468 | 0.2567  | 0.4667    | 0.378      | 0.3       | 0.0031          | 0.3                 | 0.4854  | 0.6071      | 0.0       | 0.0           | 0.018      | 0.6333         | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.6836        | 24.0  | 5568 | 0.7263          | 0.0879 | 0.1619 | 0.0854 | 0.3509    | 0.1397     | 0.0597    | 0.1718 | 0.2499 | 0.2589  | 0.4333    | 0.3818     | 0.275     | 0.0027          | 0.3                 | 0.4998  | 0.6203      | 0.0       | 0.0           | 0.025      | 0.6333         | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.6836        | 25.0  | 5800 | 0.7146          | 0.0881 | 0.1632 | 0.087  | 0.3606    | 0.1412     | 0.0714    | 0.1518 | 0.2466 | 0.2572  | 0.4667    | 0.3768     | 0.3       | 0.0032          | 0.3                 | 0.4988  | 0.6263      | 0.0       | 0.0           | 0.0267     | 0.6167         | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.6671        | 26.0  | 6032 | 0.7180          | 0.0915 | 0.1678 | 0.0918 | 0.3652    | 0.2262     | 0.0483    | 0.163  | 0.2506 | 0.2672  | 0.5       | 0.3979     | 0.2875    | 0.0186          | 0.35                | 0.5069  | 0.6367      | 0.0       | 0.0           | 0.0235     | 0.6167         | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.6671        | 27.0  | 6264 | 0.7219          | 0.0907 | 0.1678 | 0.0888 | 0.3596    | 0.2122     | 0.0492    | 0.1375 | 0.26   | 0.2709  | 0.5       | 0.4012     | 0.3       | 0.0184          | 0.35                | 0.5014  | 0.6253      | 0.0       | 0.0           | 0.0243     | 0.65           | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.6671        | 28.0  | 6496 | 0.7177          | 0.0882 | 0.1642 | 0.0866 | 0.3625    | 0.1439     | 0.0505    | 0.1463 | 0.2603 | 0.2715  | 0.5111    | 0.4021     | 0.3       | 0.0038          | 0.35                | 0.4996  | 0.6288      | 0.0       | 0.0           | 0.0256     | 0.65           | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.656         | 29.0  | 6728 | 0.7257          | 0.0873 | 0.1634 | 0.084  | 0.355     | 0.1417     | 0.0497    | 0.1433 | 0.2572 | 0.2708  | 0.5       | 0.401      | 0.3       | 0.0039          | 0.35                | 0.4962  | 0.6246      | 0.0       | 0.0           | 0.0237     | 0.65           | 0.0       | 0.0           | 0.0     | 0.0         |
| 0.656         | 30.0  | 6960 | 0.7220          | 0.0875 | 0.1634 | 0.084  | 0.355     | 0.1423     | 0.0499    | 0.1462 | 0.2602 | 0.2709  | 0.5       | 0.4013     | 0.3       | 0.0039          | 0.35                | 0.4971  | 0.6256      | 0.0       | 0.0           | 0.0239     | 0.65           | 0.0       | 0.0           | 0.0     | 0.0         |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1