File size: 1,822 Bytes
deaecf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: Ariffiq99/e_care_xlm_roberta_base_finetuned
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: KUCI_e_care_xlm_roberta_base_Finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# KUCI_e_care_xlm_roberta_base_Finetuned

This model is a fine-tuned version of [Ariffiq99/e_care_xlm_roberta_base_finetuned](https://huggingface.co/Ariffiq99/e_care_xlm_roberta_base_finetuned) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0348
- F1: 0.7682

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1     |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.6965        | 1.0   | 5196  | 0.6542          | 0.7443 |
| 0.5632        | 2.0   | 10392 | 0.6754          | 0.7591 |
| 0.4634        | 3.0   | 15588 | 0.6456          | 0.7680 |
| 0.3661        | 4.0   | 20784 | 0.7082          | 0.7657 |
| 0.2783        | 5.0   | 25980 | 0.7899          | 0.7678 |
| 0.2305        | 6.0   | 31176 | 0.9280          | 0.7655 |
| 0.2057        | 7.0   | 36372 | 1.0348          | 0.7682 |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1