File size: 21,210 Bytes
e485d0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
---
base_model: BAAI/bge-large-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:132
- loss:AnglELoss
widget:
- source_sentence: A person shall have 3045 days after commencing business within
the City to apply for a registration certificate.
sentences:
- The new transportation plan replaces the previous one approved by San Francisco
voters in 2003. |
- The Department of Elections is revising sections of its definitions and deleting
a section to operate definitions for Article 12. |
- A newly-established business shall have 3045 days after commencing business within
the City to apply for a registration certificate, and the registration fee for
such businesses shall be prorated based on the estimated gross receipts for the
tax year in which the business commences.
- source_sentence: The homelessness gross receipts tax is a privilege tax imposed
upon persons engaging in business within the City for the privilege of engaging
in a business or occupation in the City. |
sentences:
- The City imposes an annual Homelessness Gross Receipts Tax on businesses with
more than $50,000,000 in total taxable gross receipts. |
- The tax on Administrative Office Business Activities imposed by Section 2804.9
is intended as a complementary tax to the homelessness gross receipts tax, and
shall be considered a homelessness gross receipts tax for purposes of this Article
28. |
- '"The 5YPPs shall at a minimum address the following factors: compatibility with
existing and planned land uses, and with adopted standards for urban design and
for the provision of pedestrian amenities; and supportiveness of planned growth
in transit-friendly housing, employment, and services." |'
- source_sentence: '"The total worldwide compensation paid by the person and all related
entities to the person is referred to as combined payroll." |'
sentences:
- '"A taxpayer is eligible to claim a credit against their immediately succeeding
payments due for tax years or periods ending on or before December 31, 2024, of
the respective tax type by applying all or part of an overpayment of the Homelessness
Gross Receipts Tax in Article 28 (including the homelessness administrative office
tax under Section 2804(d) of Article 28)." |'
- '"Receipts from the sale of real property are exempt from the gross receipts tax
if the Real Property Transfer Tax imposed by Article 12-C has been paid to the
City."'
- '"The total amount paid for compensation in the City by the person and by all
related entities to the person is referred to as payroll in the City." |'
- source_sentence: '"The gross receipts tax rates applicable to Category 6 Business
Activities are determined based on the amount of taxable gross receipts from these
activities." |'
sentences:
- '"The project meets the criteria outlined in Section 131051(d) of the Public Utilities
Code."'
- For the business activity of clean technology, a tax rate of 0.175% (e.g. $1.75
per $1,000) applies to taxable gross receipts between $0 and $1,000,000 for tax
years beginning on or after January 1, 2021 through and including 2024. |
- '"The tax rates for Category 7 Business Activities are also determined based on
the amount of taxable gross receipts." |'
- source_sentence: '"Compensation" refers to wages, salaries, commissions, bonuses,
and property issued or transferred in exchange for services, as well as compensation
for services to owners of pass-through entities, and any other form of remuneration
paid to employees for services.'
sentences:
- '"Every person engaging in business within the City as an administrative office,
as defined below, shall pay an annual administrative office tax measured by its
total payroll expense that is attributable to the City:" |'
- '"Remuneration" refers to any payment or reward, including but not limited to
wages, salaries, commissions, bonuses, and property issued or transferred in exchange
for services, as well as compensation for services to owners of pass-through entities,
and any other form of compensation paid to employees for services.'
- '"Construction of new Americans with Disabilities Act (ADA)-compliant curb ramps
and related roadway work to permit ease of movement." |'
model-index:
- name: SentenceTransformer based on BAAI/bge-large-en-v1.5
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.22084661733353086
name: Pearson Cosine
- type: spearman_cosine
value: 0.2716541996307746
name: Spearman Cosine
- type: pearson_manhattan
value: 0.21036364810459526
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.2796975921338086
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.21078757480310292
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.2716541996307746
name: Spearman Euclidean
- type: pearson_dot
value: 0.22084663375609162
name: Pearson Dot
- type: spearman_dot
value: 0.2716541996307746
name: Spearman Dot
- type: pearson_max
value: 0.22084663375609162
name: Pearson Max
- type: spearman_max
value: 0.2796975921338086
name: Spearman Max
---
# SentenceTransformer based on BAAI/bge-large-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Areeb-02/bge-large-en-v1.5-AngleLoss-25-Epochs")
# Run inference
sentences = [
'"Compensation" refers to wages, salaries, commissions, bonuses, and property issued or transferred in exchange for services, as well as compensation for services to owners of pass-through entities, and any other form of remuneration paid to employees for services.',
'"Remuneration" refers to any payment or reward, including but not limited to wages, salaries, commissions, bonuses, and property issued or transferred in exchange for services, as well as compensation for services to owners of pass-through entities, and any other form of compensation paid to employees for services.',
'"Every person engaging in business within the City as an administrative office, as defined below, shall pay an annual administrative office tax measured by its total payroll expense that is attributable to the City:" |',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.2208 |
| **spearman_cosine** | **0.2717** |
| pearson_manhattan | 0.2104 |
| spearman_manhattan | 0.2797 |
| pearson_euclidean | 0.2108 |
| spearman_euclidean | 0.2717 |
| pearson_dot | 0.2208 |
| spearman_dot | 0.2717 |
| pearson_max | 0.2208 |
| spearman_max | 0.2797 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 132 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 10 tokens</li><li>mean: 41.99 tokens</li><li>max: 126 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 42.72 tokens</li><li>max: 162 tokens</li></ul> | <ul><li>min: 0.25</li><li>mean: 0.93</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
| <code>"Gross receipts as defined in Section 952.3 shall not include receipts from any sales of real property with respect to which the Real Property Transfer Tax imposed by Article 12-C has been paid to the City."</code> | <code>"Receipts from the sale of real property are exempt from the gross receipts tax if the Real Property Transfer Tax imposed by Article 12-C has been paid to the City."</code> | <code>1.0</code> |
| <code>For tax years beginning on or after January 1, 2025, any person or combined group, except for a lessor of residential real estate, whose gross receipts within the City did not exceed $5,000,000, adjusted annually in accordance with the increase in the Consumer Price Index: All Urban Consumers for the San Francisco/Oakland/Hayward Area for All Items as reported by the United States Bureau of Labor Statistics, or any successor to that index, as of December 31 of the calendar year two years prior to the tax year, beginning with tax year 2026, and rounded to the nearest $10,000.</code> | <code>For taxable years ending on or before December 31, 2024, using the rules set forth in Sections 956.1 and 956.2, in the manner directed in Sections 953.1 through 953.7, inclusive, and in Section 953.9 of this Article 12-A-1; and</code> | <code>0.95</code> |
| <code>"San Francisco Gross Receipts" refers to the revenue generated from sales and services within the city limits of San Francisco.</code> | <code>"Revenue generated from sales and services within the city limits of San Francisco"</code> | <code>1.0</code> |
* Loss: [<code>AnglELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_angle_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 25
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 25
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | spearman_cosine |
|:-----:|:----:|:---------------:|
| 0 | 0 | 0.3569 |
| 25.0 | 225 | 0.2717 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### AnglELoss
```bibtex
@misc{li2023angleoptimized,
title={AnglE-optimized Text Embeddings},
author={Xianming Li and Jing Li},
year={2023},
eprint={2309.12871},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |