File size: 21,210 Bytes
e485d0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
---
base_model: BAAI/bge-large-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:132
- loss:AnglELoss
widget:
- source_sentence: A person shall have 3045 days after commencing business within
    the City to apply for a registration certificate.
  sentences:
  - The new transportation plan replaces the previous one approved by San Francisco
    voters in 2003. |
  - The Department of Elections is revising sections of its definitions and deleting
    a section to operate definitions for Article 12. |
  - A newly-established business shall have 3045 days after commencing business within
    the City to apply for a registration certificate, and the registration fee for
    such businesses shall be prorated based on the estimated gross receipts for the
    tax year in which the business commences.
- source_sentence: The homelessness gross receipts tax is a privilege tax imposed
    upon persons engaging in business within the City for the privilege of engaging
    in a business or occupation in the City. |
  sentences:
  - The City imposes an annual Homelessness Gross Receipts Tax on businesses with
    more than $50,000,000 in total taxable gross receipts. |
  - The tax on Administrative Office Business Activities imposed by Section 2804.9
    is intended as a complementary tax to the homelessness gross receipts tax, and
    shall be considered a homelessness gross receipts tax for purposes of this Article
    28. |
  - '"The 5YPPs shall at a minimum address the following factors: compatibility with
    existing and planned land uses, and with adopted standards for urban design and
    for the provision of pedestrian amenities; and supportiveness of planned growth
    in transit-friendly housing, employment, and services." |'
- source_sentence: '"The total worldwide compensation paid by the person and all related
    entities to the person is referred to as combined payroll." |'
  sentences:
  - '"A taxpayer is eligible to claim a credit against their immediately succeeding
    payments due for tax years or periods ending on or before December 31, 2024, of
    the respective tax type by applying all or part of an overpayment of the Homelessness
    Gross Receipts Tax in Article 28 (including the homelessness administrative office
    tax under Section 2804(d) of Article 28)." |'
  - '"Receipts from the sale of real property are exempt from the gross receipts tax
    if the Real Property Transfer Tax imposed by Article 12-C has been paid to the
    City."'
  - '"The total amount paid for compensation in the City by the person and by all
    related entities to the person is referred to as payroll in the City." |'
- source_sentence: '"The gross receipts tax rates applicable to Category 6 Business
    Activities are determined based on the amount of taxable gross receipts from these
    activities." |'
  sentences:
  - '"The project meets the criteria outlined in Section 131051(d) of the Public Utilities
    Code."'
  - For the business activity of clean technology, a tax rate of 0.175% (e.g. $1.75
    per $1,000) applies to taxable gross receipts between $0 and $1,000,000 for tax
    years beginning on or after January 1, 2021 through and including 2024. |
  - '"The tax rates for Category 7 Business Activities are also determined based on
    the amount of taxable gross receipts." |'
- source_sentence: '"Compensation" refers to wages, salaries, commissions, bonuses,
    and property issued or transferred in exchange for services, as well as compensation
    for services to owners of pass-through entities, and any other form of remuneration
    paid to employees for services.'
  sentences:
  - '"Every person engaging in business within the City as an administrative office,
    as defined below, shall pay an annual administrative office tax measured by its
    total payroll expense that is attributable to the City:" |'
  - '"Remuneration" refers to any payment or reward, including but not limited to
    wages, salaries, commissions, bonuses, and property issued or transferred in exchange
    for services, as well as compensation for services to owners of pass-through entities,
    and any other form of compensation paid to employees for services.'
  - '"Construction of new Americans with Disabilities Act (ADA)-compliant curb ramps
    and related roadway work to permit ease of movement." |'
model-index:
- name: SentenceTransformer based on BAAI/bge-large-en-v1.5
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: pearson_cosine
      value: 0.22084661733353086
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.2716541996307746
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.21036364810459526
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.2796975921338086
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.21078757480310292
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.2716541996307746
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.22084663375609162
      name: Pearson Dot
    - type: spearman_dot
      value: 0.2716541996307746
      name: Spearman Dot
    - type: pearson_max
      value: 0.22084663375609162
      name: Pearson Max
    - type: spearman_max
      value: 0.2796975921338086
      name: Spearman Max
---

# SentenceTransformer based on BAAI/bge-large-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Areeb-02/bge-large-en-v1.5-AngleLoss-25-Epochs")
# Run inference
sentences = [
    '"Compensation" refers to wages, salaries, commissions, bonuses, and property issued or transferred in exchange for services, as well as compensation for services to owners of pass-through entities, and any other form of remuneration paid to employees for services.',
    '"Remuneration" refers to any payment or reward, including but not limited to wages, salaries, commissions, bonuses, and property issued or transferred in exchange for services, as well as compensation for services to owners of pass-through entities, and any other form of compensation paid to employees for services.',
    '"Every person engaging in business within the City as an administrative office, as defined below, shall pay an annual administrative office tax measured by its total payroll expense that is attributable to the City:" |',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.2208     |
| **spearman_cosine** | **0.2717** |
| pearson_manhattan   | 0.2104     |
| spearman_manhattan  | 0.2797     |
| pearson_euclidean   | 0.2108     |
| spearman_euclidean  | 0.2717     |
| pearson_dot         | 0.2208     |
| spearman_dot        | 0.2717     |
| pearson_max         | 0.2208     |
| spearman_max        | 0.2797     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 132 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                           | sentence2                                                                           | score                                                           |
  |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | type    | string                                                                              | string                                                                              | float                                                           |
  | details | <ul><li>min: 10 tokens</li><li>mean: 41.99 tokens</li><li>max: 126 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 42.72 tokens</li><li>max: 162 tokens</li></ul> | <ul><li>min: 0.25</li><li>mean: 0.93</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sentence2                                                                                                                                                                                                                                        | score             |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
  | <code>"Gross receipts as defined in Section 952.3 shall not include receipts from any sales of real property with respect to which the Real Property Transfer Tax imposed by Article 12-C has been paid to the City."</code>                                                                                                                                                                                                                                                                                                                                                                                       | <code>"Receipts from the sale of real property are exempt from the gross receipts tax if the Real Property Transfer Tax imposed by Article 12-C has been paid to the City."</code>                                                               | <code>1.0</code>  |
  | <code>For tax years beginning on or after January 1, 2025, any person or combined group, except for a lessor of residential real estate, whose gross receipts within the City did not exceed $5,000,000, adjusted annually in accordance with the increase in the Consumer Price Index: All Urban Consumers for the San Francisco/Oakland/Hayward Area for All Items as reported by the United States Bureau of Labor Statistics, or any successor to that index, as of December 31 of the calendar year two years prior to the tax year, beginning with tax year 2026, and rounded to the nearest $10,000.</code> | <code>For taxable years ending on or before December 31, 2024, using the rules set forth in Sections 956.1 and 956.2, in the manner directed in Sections 953.1 through 953.7, inclusive, and in Section 953.9 of this Article 12-A-1; and</code> | <code>0.95</code> |
  | <code>"San Francisco Gross Receipts" refers to the revenue generated from sales and services within the city limits of San Francisco.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <code>"Revenue generated from sales and services within the city limits of San Francisco"</code>                                                                                                                                                 | <code>1.0</code>  |
* Loss: [<code>AnglELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_angle_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 25
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 25
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step | spearman_cosine |
|:-----:|:----:|:---------------:|
| 0     | 0    | 0.3569          |
| 25.0  | 225  | 0.2717          |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### AnglELoss
```bibtex
@misc{li2023angleoptimized,
    title={AnglE-optimized Text Embeddings}, 
    author={Xianming Li and Jing Li},
    year={2023},
    eprint={2309.12871},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->