File size: 1,864 Bytes
93b87e5
 
 
 
 
 
 
 
 
783f148
93b87e5
 
 
 
 
 
 
783f148
93b87e5
783f148
 
 
 
 
 
93b87e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783f148
 
 
 
93b87e5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: my_awesome_billsum_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_billsum_model

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9180
- Rouge1: 0.3748
- Rouge2: 0.2236
- Rougel: 0.3625
- Rougelsum: 0.3617
- Gen Len: 11.1364

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 200  | 2.7734          | 0.1861 | 0.065  | 0.1791 | 0.1788    | 13.0063 |
| No log        | 2.0   | 400  | 2.2328          | 0.3707 | 0.2281 | 0.3577 | 0.3569    | 11.0914 |
| 3.4712        | 3.0   | 600  | 1.9912          | 0.3745 | 0.2224 | 0.3616 | 0.3608    | 11.1239 |
| 3.4712        | 4.0   | 800  | 1.9180          | 0.3748 | 0.2236 | 0.3625 | 0.3617    | 11.1364 |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1