metadata
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
datasets:
- indonlu_nergrit
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: belajarner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: indonlu_nergrit
type: indonlu_nergrit
config: indonlu_nergrit_source
split: validation
args: indonlu_nergrit_source
metrics:
- name: Precision
type: precision
value: 0.8400335008375209
- name: Recall
type: recall
value: 0.8631669535283993
- name: F1
type: f1
value: 0.8514431239388794
- name: Accuracy
type: accuracy
value: 0.949652118912081
belajarner
This model is a fine-tuned version of indolem/indobert-base-uncased on the indonlu_nergrit dataset. It achieves the following results on the evaluation set:
- Loss: 0.2914
- Precision: 0.8400
- Recall: 0.8632
- F1: 0.8514
- Accuracy: 0.9497
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 209 | 0.2655 | 0.8163 | 0.8718 | 0.8431 | 0.9424 |
No log | 2.0 | 418 | 0.2315 | 0.8146 | 0.8546 | 0.8341 | 0.9486 |
0.04 | 3.0 | 627 | 0.2466 | 0.8291 | 0.8640 | 0.8462 | 0.9470 |
0.04 | 4.0 | 836 | 0.2412 | 0.8322 | 0.8623 | 0.8470 | 0.9503 |
0.03 | 5.0 | 1045 | 0.2636 | 0.8386 | 0.8898 | 0.8635 | 0.9521 |
0.03 | 6.0 | 1254 | 0.2830 | 0.8399 | 0.8623 | 0.8510 | 0.9497 |
0.03 | 7.0 | 1463 | 0.2848 | 0.8376 | 0.8657 | 0.8515 | 0.9500 |
0.013 | 8.0 | 1672 | 0.2914 | 0.8400 | 0.8632 | 0.8514 | 0.9497 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2