File size: 14,359 Bytes
8bc3d6d
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f251c2e4b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f251c2e4c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f251c2e4ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f251c2e4d30>", "_build": "<function ActorCriticPolicy._build at 0x7f251c2e4dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f251c2e4e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f251c2e4ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f251c2e4f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f251c2ea040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f251c2ea0d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f251c2ea160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f251c2e5d00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659969608.9752102, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFUvaG9tZS9hdXRvd2luL2FuYWNvbmRhMy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxVL2hvbWUvYXV0b3dpbi9hbmFjb25kYTMvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD32er4b3Lc/nABTwNJNib7RNz4+zIEBP6svRj8eCly+nHp6v409Dj4j7Z+9xA6Lvy55ljwrHTa9Y9GrvtAmxz0DIEe/CgBxv1d3ND9BsZe+ggicPqhIJL9jyom+SXa7PWEUe7/1hAo/p+nLPiE/Kj9/bwPAZRvWPjHESj67lqi/fzA4v1oj4z0F3ze/yJuvPz7A+z/8nbI7D/OXv6s8Gr1jMn++wuSCv9y0bz9azGu+DL3sP7PG9z0o7Jg9NNfkvCd0aD+8XRc9c2CTvy04nL0ngoI/GY/sv6fpyz4hPyo/Vp/Fv1LTbz9wsQy/m2vYvwxYTL9tImS9O2RJvts2tT/gDs26Nikmv+smar9qYFi+SySXv+hB2r/2ozs/Sa6+Pyb7pD5osxu/bcy5PPELk74M9di+qrg8P8JGk7/KU427J4KCPxmP7L+n6cs+IT8qP7pRFr8qAzO/+kBRP4RqCr8LfKg/MCgCP/mBiT9c7Fg/48/7P4XXKLzghsu+pAD/v538NT8zkNA++Z00vwojmb3nqfs9NncLvzkQNT+Vioy+X64MPxP7Eb/udYe/abpUvmEUe7/1hAo/p+nLPiE/Kj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC8HP21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAf92CPQAAAADxHeG/AAAAAFChqjwAAAAAi7fgPwAAAACBwwG+AAAAAIrR3z8AAAAAcdPDvQAAAABMveO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+1KyNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGDjeL0AAAAA+1/kvwAAAACRLy09AAAAAIta/D8AAAAAGToOvgAAAADPq/A/AAAAACPWzL0AAAAA41XnvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANfjjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBamG69AAAAABGz5r8AAAAAL9XBvQAAAABvntk/AAAAAMmdAj4AAAAA4SvoPwAAAACo7jg9AAAAAHpv5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/DAi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAye1zvQAAAACyHu6/AAAAAHGdkDwAAAAAHL7xPwAAAADCrfC9AAAAAMAz2z8AAAAAw0bAvAAAAADOae6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJL/uwD/2kCMAWyUTegDjAF0lEdAnoL47V8TjHV9lChoBkdAjw6FbmlqJ2gHTegDaAhHQJ6K3Nqxkd51fZQoaAZHQJE45NXYDkloB03oA2gIR0CejFszVMEidX2UKGgGR0Bx792r4nF6aAdN6ANoCEdAno7NNvfj0nV9lChoBkdAiddXPZ7HAGgHTegDaAhHQJ6VGLYPGyZ1fZQoaAZHQGrJXB55Z8toB03oA2gIR0CenQq8DjiodX2UKGgGR0CRI+VYZEUkaAdN6ANoCEdAnp54c3l0YHV9lChoBkdAjxunNPgvUWgHTegDaAhHQJ6hDVkMCtB1fZQoaAZHQJFD+emNzbNoB03oA2gIR0Cep1kBjnV5dX2UKGgGR0CQP0BtUGVzaAdN6ANoCEdAnq8HLFGXonV9lChoBkdAjnkWJSBK+WgHTegDaAhHQJ6wVl6JIlN1fZQoaAZHQJAY7voePq9oB03oA2gIR0Cesqy5qdpZdX2UKGgGR0CPKno6CDmKaAdN6ANoCEdAnrg3AZbY9XV9lChoBkdAjV2psO5J9WgHTegDaAhHQJ6/feoDPnl1fZQoaAZHQIhlj+YMOPNoB03oA2gIR0CewM+YMOPOdX2UKGgGR0CIjnmPo3aSaAdN6ANoCEdAnsMV5GBnSXV9lChoBkdAiVPzjm0VrWgHTegDaAhHQJ7IoO8TSLJ1fZQoaAZHQIBjKjpLVWloB03oA2gIR0Cez8aP0Zm7dX2UKGgGR0B6HE+3Ytg8aAdN6ANoCEdAntELExZdOnV9lChoBkdAhrlMDGLk0mgHTegDaAhHQJ7TPuNPxhF1fZQoaAZHQIp+UewLVnVoB03oA2gIR0Ce2LXPqs2fdX2UKGgGR0CL1eTL4etCaAdN6ANoCEdAnt+x5s0pE3V9lChoBkdAkXNXK0UoKGgHTegDaAhHQJ7g+LYPGyZ1fZQoaAZHQJBotXEIgNhoB03oA2gIR0Ce40gjhUBGdX2UKGgGR0CSoSsyi22HaAdN6ANoCEdAnujxeHBUJnV9lChoBkdAhXi/3vhIfGgHTegDaAhHQJ7v6dOIqLF1fZQoaAZHQJFxR5le4TdoB03oA2gIR0Ce8RvvjOs1dX2UKGgGR0CRwzv3rUsnaAdN6ANoCEdAnvNWIj4YanV9lChoBkdAkfRihBZ6lmgHTegDaAhHQJ74sTBZZB91fZQoaAZHQJE03d8Aq/doB03oA2gIR0Ce/+W3Sa3JdX2UKGgGR0CS3sdHlOoHaAdN6ANoCEdAnwEhdY4hlnV9lChoBkdAkj99TUAks2gHTegDaAhHQJ8DWJyhi9Z1fZQoaAZHQJQXN5TqB3BoB03oA2gIR0CfCMISlFc6dX2UKGgGR0CTc5SHM2WIaAdN6ANoCEdAnw+bFbVz63V9lChoBkdAkcQsiOearmgHTegDaAhHQJ8QyVMVUMp1fZQoaAZHQJLwhOUMXrNoB03oA2gIR0CfEu1e0G/vdX2UKGgGR0CSiYkhRqGlaAdN6ANoCEdAnxhl1fVqe3V9lChoBkdAkXevWcz68GgHTegDaAhHQJ8fSfPHDJl1fZQoaAZHQJKR4gNgBtFoB03oA2gIR0CfIISPEKmbdX2UKGgGR0CSRI0h/y5JaAdN6ANoCEdAnyK0H+qBE3V9lChoBkdAj1q7Lt/nXGgHTegDaAhHQJ8oL9DQZ4x1fZQoaAZHQJK8JBRhttRoB03oA2gIR0CfL1CP6sQvdX2UKGgGR0CSC2gWac7RaAdN6ANoCEdAnzCH9JjDsXV9lChoBkdAka2FpsXSB2gHTegDaAhHQJ8y0MSbpeN1fZQoaAZHQJJhXj81n/VoB03oA2gIR0CfOFK+i8FqdX2UKGgGR0CO/RJd0JWvaAdN6ANoCEdAnz99cB2fTXV9lChoBkdAkRkpHI6sAGgHTegDaAhHQJ9AuxUvPC51fZQoaAZHQI2py+g13t9oB03oA2gIR0CfQvQsf7rLdX2UKGgGR0CQFg6SDAaeaAdN6ANoCEdAn0iBTXJ5mnV9lChoBkdAkGz3446wMmgHTegDaAhHQJ9PYQK8cuJ1fZQoaAZHQJI4V5JK8L9oB03oA2gIR0CfUKn2qT8pdX2UKGgGR0CTx1kep4r0aAdN6ANoCEdAn1MB7mdRSHV9lChoBkdAkhAY2S+xnmgHTegDaAhHQJ9Y0xtYSxt1fZQoaAZHQI3k+ws5GSZoB03oA2gIR0CfYGXD3ueCdX2UKGgGR0CK7V1UVBUraAdN6ANoCEdAn2GtlI3BHnV9lChoBkdAiyzu+yquKWgHTegDaAhHQJ9j3beuV5d1fZQoaAZHQIm1zF6zE75oB03oA2gIR0CfaUOD8LrpdX2UKGgGR0CJYKYZ2pyZaAdN6ANoCEdAn3A/ykKu0XV9lChoBkdAitIILPUrkWgHTegDaAhHQJ9xhDtw71Z1fZQoaAZHQI1siews5GVoB03oA2gIR0Cfc814gRsedX2UKGgGR0CNLJhw2l2vaAdN6ANoCEdAn3lLYsd1dXV9lChoBkdAi3IG9Htnf2gHTegDaAhHQJ+AaCL/CIl1fZQoaAZHQI27ihi9ZidoB03oA2gIR0CfgZ3solUqdX2UKGgGR0CQFkU1Q66raAdN6ANoCEdAn4PaQ/5cknV9lChoBkdAig8lVT72tmgHTegDaAhHQJ+JSH9FWn11fZQoaAZHQJAWJNcnmaJoB03oA2gIR0CfkF6sQumKdX2UKGgGR0CQNOW1MM7VaAdN6ANoCEdAn5GjTBqKxnV9lChoBkdAkr+4EOiFkGgHTegDaAhHQJ+T3LJSzgN1fZQoaAZHQIm2e4Cp3otoB03oA2gIR0CfmZoo/iYLdX2UKGgGR0CQX68TzundaAdN6ANoCEdAn6DxnezlcXV9lChoBkdAkN++8brC32gHTegDaAhHQJ+iL7P6bfB1fZQoaAZHQJIOrm4iHIpoB03oA2gIR0CfpFO+7Dl6dX2UKGgGR0CTBiuIAOriaAdN6ANoCEdAn6mqNuLrHHV9lChoBkdAk5bNp22Xs2gHTegDaAhHQJ+w1ZntfHB1fZQoaAZHQJI8pDJEH+toB03oA2gIR0CfshaGHpKSdX2UKGgGR0CShAr3j+72aAdN6ANoCEdAn7ROo99tuXV9lChoBkdAk30MBdUsF2gHTegDaAhHQJ+59nHvMKV1fZQoaAZHQJVYD08NhE1oB03oA2gIR0CfwPUZeiSJdX2UKGgGR0CT41oAXEZSaAdN6ANoCEdAn8JNh3JPqXV9lChoBkdAlQVE74i5eGgHTegDaAhHQJ/Eh/y5I6N1fZQoaAZHQJBjFmRNh3JoB03oA2gIR0CfygFVDKHPdX2UKGgGR0CTL5QtSQ5naAdN6ANoCEdAn9EDundfs3V9lChoBkdAlw8s7uDzy2gHTegDaAhHQJ/SMcvM8ox1fZQoaAZHQJaL+PluFYdoB03oA2gIR0Cf1F7IT4+KdX2UKGgGR0CUpoHymQ8waAdN6ANoCEdAn9m9DQZ4wHV9lChoBkdAl9Y3wXqJM2gHTegDaAhHQJ/hCe4Cp3p1fZQoaAZHQJcTAccU/OdoB03oA2gIR0Cf4lMhHLA6dX2UKGgGR0CVcmkRBeHBaAdN6ANoCEdAn+R9Net0WHV9lChoBkdAkfmqoMrmQ2gHTegDaAhHQJ/p7QgLZzx1fZQoaAZHQJVMBnZkCmxoB03oA2gIR0Cf8Mbb1yvLdX2UKGgGR0CSfPmJ3xFzaAdN6ANoCEdAn/Hx33YcvXV9lChoBkdAla5OWOZLI2gHTegDaAhHQJ/0O99MK1J1fZQoaAZHQJbOkZ88cMpoB03oA2gIR0Cf+dGFi8WcdX2UKGgGR0CSEElN1yNoaAdN6ANoCEdAoABRKSPluHV9lChoBkdAlSA9UbT+emgHTegDaAhHQKAA6er+5vt1fZQoaAZHQIk+5aiblRxoB03oA2gIR0CgAfsXizcAdX2UKGgGR0CTLZ0ALiMpaAdN6ANoCEdAoASr0nPVu3V9lChoBkdAlSdC79Q40mgHTegDaAhHQKAIU2rn1Wd1fZQoaAZHQJbFPbAUL2JoB03oA2gIR0CgCPsRg7YDdX2UKGgGR0CWg0LCN0eVaAdN6ANoCEdAoAoUDEFW4nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-43-generic-x86_64-with-glibc2.35 #46-Ubuntu SMP Tue Jul 12 10:30:17 UTC 2022", "Python": "3.9.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.12.0+cu102", "GPU Enabled": "True", "Numpy": "1.19.5", "Gym": "0.21.0"}}