File size: 2,054 Bytes
e84d1f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: populism_model90
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# populism_model90
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7308
- Accuracy: 0.9179
- F1: 0.4335
- Recall: 0.5116
- Precision: 0.3761
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 0.3922 | 1.0 | 88 | 0.3904 | 0.8769 | 0.4062 | 0.6860 | 0.2885 |
| 0.2731 | 2.0 | 176 | 0.7119 | 0.9347 | 0.3960 | 0.3488 | 0.4580 |
| 0.2129 | 3.0 | 264 | 0.4806 | 0.9040 | 0.4035 | 0.5291 | 0.3262 |
| 0.1491 | 4.0 | 352 | 0.6170 | 0.9162 | 0.4226 | 0.5 | 0.3660 |
| 0.1097 | 5.0 | 440 | 0.7308 | 0.9179 | 0.4335 | 0.5116 | 0.3761 |
### Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|