File size: 8,607 Bytes
370d283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_file: example.pkl
widget:
  structuredData:
    area error:
    - 30.29
    - 96.05
    - 48.31
    compactness error:
    - 0.01911
    - 0.01652
    - 0.01484
    concave points error:
    - 0.01037
    - 0.0137
    - 0.01093
    concavity error:
    - 0.02701
    - 0.02269
    - 0.02813
    fractal dimension error:
    - 0.003586
    - 0.001698
    - 0.002461
    mean area:
    - 481.9
    - 1130.0
    - 748.9
    mean compactness:
    - 0.1058
    - 0.1029
    - 0.1223
    mean concave points:
    - 0.03821
    - 0.07951
    - 0.08087
    mean concavity:
    - 0.08005
    - 0.108
    - 0.1466
    mean fractal dimension:
    - 0.06373
    - 0.05461
    - 0.05796
    mean perimeter:
    - 81.09
    - 123.6
    - 101.7
    mean radius:
    - 12.47
    - 18.94
    - 15.46
    mean smoothness:
    - 0.09965
    - 0.09009
    - 0.1092
    mean symmetry:
    - 0.1925
    - 0.1582
    - 0.1931
    mean texture:
    - 18.6
    - 21.31
    - 19.48
    perimeter error:
    - 2.497
    - 5.486
    - 3.094
    radius error:
    - 0.3961
    - 0.7888
    - 0.4743
    smoothness error:
    - 0.006953
    - 0.004444
    - 0.00624
    symmetry error:
    - 0.01782
    - 0.01386
    - 0.01397
    texture error:
    - 1.044
    - 0.7975
    - 0.7859
    worst area:
    - 677.9
    - 1866.0
    - 1156.0
    worst compactness:
    - 0.2378
    - 0.2336
    - 0.2394
    worst concave points:
    - 0.1015
    - 0.1789
    - 0.1514
    worst concavity:
    - 0.2671
    - 0.2687
    - 0.3791
    worst fractal dimension:
    - 0.0875
    - 0.06589
    - 0.08019
    worst perimeter:
    - 96.05
    - 165.9
    - 124.9
    worst radius:
    - 14.97
    - 24.86
    - 19.26
    worst smoothness:
    - 0.1426
    - 0.1193
    - 0.1546
    worst symmetry:
    - 0.3014
    - 0.2551
    - 0.2837
    worst texture:
    - 24.64
    - 26.58
    - 26.0
---

# Model description

This is a DecisionTreeClassifier model trained on breast cancer dataset.

## Intended uses & limitations

This model is not ready to be used in production.

## Training Procedure

### Hyperparameters

The model is trained with below hyperparameters.

<details>
<summary> Click to expand </summary>

| Hyperparameter           | Value   |
|--------------------------|---------|
| ccp_alpha                | 0.0     |
| class_weight             |         |
| criterion                | gini    |
| max_depth                |         |
| max_features             |         |
| max_leaf_nodes           |         |
| min_impurity_decrease    | 0.0     |
| min_samples_leaf         | 1       |
| min_samples_split        | 2       |
| min_weight_fraction_leaf | 0.0     |
| random_state             |         |
| splitter                 | best    |

</details>

### Model Plot

The model plot is below.

<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>DecisionTreeClassifier()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier()</pre></div></div></div></div></div>

## Evaluation Results

You can find the details about evaluation process and the evaluation results.



| Metric   |    Value |
|----------|----------|
| accuracy | 0.929825 |
| f1 score | 0.929825 |

# How to Get Started with the Model

Use the code below to get started with the model.

```python
import joblib
import json
import pandas as pd
clf = joblib.load(example.pkl)
with open("config.json") as f:
    config = json.load(f)
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
```


# Model Card Authors

This model card is written by following authors:

skops_user

# Model Card Contact

You can contact the model card authors through following channels:
[More Information Needed]

# Citation

Below you can find information related to citation.

**BibTeX:**
```
bibtex
@inproceedings{...,year={2020}}
```


# Additional Content

## confusion_matrix

![confusion_matrix](confusion_matrix.png)