File size: 9,083 Bytes
05c9ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
import pytest
from unittest import mock
import os
import numpy as np
from mlagents.torch_utils import torch, default_device
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.ppo.optimizer_torch import TorchPPOOptimizer, PPOSettings
from mlagents.trainers.sac.optimizer_torch import TorchSACOptimizer, SACSettings
from mlagents.trainers.poca.optimizer_torch import TorchPOCAOptimizer, POCASettings
from mlagents.trainers.model_saver.torch_model_saver import (
TorchModelSaver,
DEFAULT_CHECKPOINT_NAME,
)
from mlagents.trainers.settings import (
TrainerSettings,
NetworkSettings,
EncoderType,
)
from mlagents.trainers.tests import mock_brain as mb
from mlagents.trainers.tests.torch_entities.test_policy import create_policy_mock
from mlagents.trainers.torch_entities.utils import ModelUtils
def test_register(tmp_path):
trainer_params = TrainerSettings()
model_saver = TorchModelSaver(trainer_params, tmp_path)
opt = mock.Mock(spec=TorchPPOOptimizer)
opt.get_modules = mock.Mock(return_value={})
model_saver.register(opt)
assert model_saver.policy is None
trainer_params = TrainerSettings()
policy = create_policy_mock(trainer_params.network_settings)
opt.get_modules = mock.Mock(return_value={})
model_saver.register(policy)
assert model_saver.policy is not None
def test_load_save_policy(tmp_path):
path1 = os.path.join(tmp_path, "runid1")
path2 = os.path.join(tmp_path, "runid2")
trainer_params = TrainerSettings()
policy = create_policy_mock(trainer_params.network_settings)
model_saver = TorchModelSaver(trainer_params, path1)
model_saver.register(policy)
model_saver.initialize_or_load(policy)
policy.set_step(2000)
mock_brain_name = "MockBrain"
model_saver.save_checkpoint(mock_brain_name, 2000)
assert len(os.listdir(tmp_path)) > 0
# Try load from this path
model_saver2 = TorchModelSaver(trainer_params, path1, load=True)
policy2 = create_policy_mock(trainer_params.network_settings)
model_saver2.register(policy2)
model_saver2.initialize_or_load(policy2)
_compare_two_policies(policy, policy2)
assert policy2.get_current_step() == 2000
# Try initialize from path 1
trainer_params.init_path = os.path.join(path1, DEFAULT_CHECKPOINT_NAME)
model_saver3 = TorchModelSaver(trainer_params, path2)
policy3 = create_policy_mock(trainer_params.network_settings)
model_saver3.register(policy3)
model_saver3.initialize_or_load(policy3)
_compare_two_policies(policy2, policy3)
# Assert that the steps are 0.
assert policy3.get_current_step() == 0
@pytest.mark.parametrize("vis_encode_type", ["resnet", "nature_cnn", "match3"])
def test_load_policy_different_hidden_units(tmp_path, vis_encode_type):
path1 = os.path.join(tmp_path, "runid1")
trainer_params = TrainerSettings()
trainer_params.network_settings = NetworkSettings(
hidden_units=12, vis_encode_type=EncoderType(vis_encode_type)
)
policy = create_policy_mock(trainer_params.network_settings, use_visual=True)
conv_params = [mod for mod in policy.actor.parameters() if len(mod.shape) > 2]
model_saver = TorchModelSaver(trainer_params, path1)
model_saver.register(policy)
model_saver.initialize_or_load(policy)
policy.set_step(2000)
mock_brain_name = "MockBrain"
model_saver.save_checkpoint(mock_brain_name, 2000)
# Try load from this path
trainer_params2 = TrainerSettings()
trainer_params2.network_settings = NetworkSettings(
hidden_units=10, vis_encode_type=EncoderType(vis_encode_type)
)
model_saver2 = TorchModelSaver(trainer_params2, path1, load=True)
policy2 = create_policy_mock(trainer_params2.network_settings, use_visual=True)
conv_params2 = [mod for mod in policy2.actor.parameters() if len(mod.shape) > 2]
# asserts convolutions have different parameters before load
for conv1, conv2 in zip(conv_params, conv_params2):
assert not torch.equal(conv1, conv2)
# asserts layers still have different dimensions
for mod1, mod2 in zip(policy.actor.parameters(), policy2.actor.parameters()):
if mod1.shape[0] == 12:
assert mod2.shape[0] == 10
model_saver2.register(policy2)
model_saver2.initialize_or_load(policy2)
# asserts convolutions have same parameters after load
for conv1, conv2 in zip(conv_params, conv_params2):
assert torch.equal(conv1, conv2)
# asserts layers still have different dimensions
for mod1, mod2 in zip(policy.actor.parameters(), policy2.actor.parameters()):
if mod1.shape[0] == 12:
assert mod2.shape[0] == 10
@pytest.mark.parametrize(
"optimizer",
[
(TorchPPOOptimizer, PPOSettings),
(TorchSACOptimizer, SACSettings),
(TorchPOCAOptimizer, POCASettings),
],
ids=["ppo", "sac", "poca"],
)
def test_load_save_optimizer(tmp_path, optimizer):
OptimizerClass, HyperparametersClass = optimizer
trainer_settings = TrainerSettings()
trainer_settings.hyperparameters = HyperparametersClass()
policy = create_policy_mock(trainer_settings.network_settings, use_discrete=False)
optimizer = OptimizerClass(policy, trainer_settings)
# save at path 1
path1 = os.path.join(tmp_path, "runid1")
model_saver = TorchModelSaver(trainer_settings, path1)
model_saver.register(policy)
model_saver.register(optimizer)
model_saver.initialize_or_load()
policy.set_step(2000)
model_saver.save_checkpoint("MockBrain", 2000)
# create a new optimizer and policy
policy2 = create_policy_mock(trainer_settings.network_settings, use_discrete=False)
optimizer2 = OptimizerClass(policy2, trainer_settings)
# load weights
model_saver2 = TorchModelSaver(trainer_settings, path1, load=True)
model_saver2.register(policy2)
model_saver2.register(optimizer2)
model_saver2.initialize_or_load() # This is to load the optimizers
# Compare the two optimizers
_compare_two_optimizers(optimizer, optimizer2)
# TorchPolicy.evalute() returns log_probs instead of all_log_probs like tf does.
# resulting in indeterministic results for testing.
# So here use sample_actions instead.
def _compare_two_policies(policy1: TorchPolicy, policy2: TorchPolicy) -> None:
"""
Make sure two policies have the same output for the same input.
"""
policy1.actor = policy1.actor.to(default_device())
policy2.actor = policy2.actor.to(default_device())
decision_step, _ = mb.create_steps_from_behavior_spec(
policy1.behavior_spec, num_agents=1
)
np_obs = decision_step.obs
masks = policy1._extract_masks(decision_step)
memories = torch.as_tensor(
policy1.retrieve_memories(list(decision_step.agent_id))
).unsqueeze(0)
tensor_obs = [ModelUtils.list_to_tensor(obs) for obs in np_obs]
with torch.no_grad():
_, stat_dict1, _ = policy1.actor.get_action_and_stats(
tensor_obs, masks=masks, memories=memories
)
_, stat_dict2, _ = policy2.actor.get_action_and_stats(
tensor_obs, masks=masks, memories=memories
)
log_probs1 = stat_dict1["log_probs"]
log_probs2 = stat_dict2["log_probs"]
np.testing.assert_array_equal(
ModelUtils.to_numpy(log_probs1.all_discrete_tensor),
ModelUtils.to_numpy(log_probs2.all_discrete_tensor),
)
def _compare_two_optimizers(opt1: TorchOptimizer, opt2: TorchOptimizer) -> None:
trajectory = mb.make_fake_trajectory(
length=10,
observation_specs=opt1.policy.behavior_spec.observation_specs,
action_spec=opt1.policy.behavior_spec.action_spec,
max_step_complete=True,
)
with torch.no_grad():
_, opt1_val_out, _ = opt1.get_trajectory_value_estimates(
trajectory.to_agentbuffer(), trajectory.next_obs, done=False
)
_, opt2_val_out, _ = opt2.get_trajectory_value_estimates(
trajectory.to_agentbuffer(), trajectory.next_obs, done=False
)
for opt1_val, opt2_val in zip(opt1_val_out.values(), opt2_val_out.values()):
np.testing.assert_array_equal(opt1_val, opt2_val)
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
def test_checkpoint_conversion(tmpdir, rnn, visual, discrete):
dummy_config = TrainerSettings()
model_path = os.path.join(tmpdir, "Mock_Brain")
policy = create_policy_mock(
dummy_config.network_settings,
use_rnn=rnn,
use_discrete=discrete,
use_visual=visual,
)
trainer_params = TrainerSettings()
model_saver = TorchModelSaver(trainer_params, model_path)
model_saver.register(policy)
model_saver.save_checkpoint("Mock_Brain", 100)
assert os.path.isfile(model_path + "/Mock_Brain-100.onnx")
|