File size: 9,083 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
import pytest
from unittest import mock
import os

import numpy as np
from mlagents.torch_utils import torch, default_device
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.ppo.optimizer_torch import TorchPPOOptimizer, PPOSettings
from mlagents.trainers.sac.optimizer_torch import TorchSACOptimizer, SACSettings
from mlagents.trainers.poca.optimizer_torch import TorchPOCAOptimizer, POCASettings
from mlagents.trainers.model_saver.torch_model_saver import (
    TorchModelSaver,
    DEFAULT_CHECKPOINT_NAME,
)
from mlagents.trainers.settings import (
    TrainerSettings,
    NetworkSettings,
    EncoderType,
)
from mlagents.trainers.tests import mock_brain as mb
from mlagents.trainers.tests.torch_entities.test_policy import create_policy_mock
from mlagents.trainers.torch_entities.utils import ModelUtils


def test_register(tmp_path):
    trainer_params = TrainerSettings()
    model_saver = TorchModelSaver(trainer_params, tmp_path)

    opt = mock.Mock(spec=TorchPPOOptimizer)
    opt.get_modules = mock.Mock(return_value={})
    model_saver.register(opt)
    assert model_saver.policy is None

    trainer_params = TrainerSettings()
    policy = create_policy_mock(trainer_params.network_settings)
    opt.get_modules = mock.Mock(return_value={})
    model_saver.register(policy)
    assert model_saver.policy is not None


def test_load_save_policy(tmp_path):
    path1 = os.path.join(tmp_path, "runid1")
    path2 = os.path.join(tmp_path, "runid2")
    trainer_params = TrainerSettings()
    policy = create_policy_mock(trainer_params.network_settings)
    model_saver = TorchModelSaver(trainer_params, path1)
    model_saver.register(policy)
    model_saver.initialize_or_load(policy)
    policy.set_step(2000)

    mock_brain_name = "MockBrain"
    model_saver.save_checkpoint(mock_brain_name, 2000)
    assert len(os.listdir(tmp_path)) > 0

    # Try load from this path
    model_saver2 = TorchModelSaver(trainer_params, path1, load=True)
    policy2 = create_policy_mock(trainer_params.network_settings)
    model_saver2.register(policy2)
    model_saver2.initialize_or_load(policy2)
    _compare_two_policies(policy, policy2)
    assert policy2.get_current_step() == 2000

    # Try initialize from path 1
    trainer_params.init_path = os.path.join(path1, DEFAULT_CHECKPOINT_NAME)
    model_saver3 = TorchModelSaver(trainer_params, path2)
    policy3 = create_policy_mock(trainer_params.network_settings)
    model_saver3.register(policy3)
    model_saver3.initialize_or_load(policy3)
    _compare_two_policies(policy2, policy3)
    # Assert that the steps are 0.
    assert policy3.get_current_step() == 0


@pytest.mark.parametrize("vis_encode_type", ["resnet", "nature_cnn", "match3"])
def test_load_policy_different_hidden_units(tmp_path, vis_encode_type):
    path1 = os.path.join(tmp_path, "runid1")
    trainer_params = TrainerSettings()
    trainer_params.network_settings = NetworkSettings(
        hidden_units=12, vis_encode_type=EncoderType(vis_encode_type)
    )
    policy = create_policy_mock(trainer_params.network_settings, use_visual=True)
    conv_params = [mod for mod in policy.actor.parameters() if len(mod.shape) > 2]

    model_saver = TorchModelSaver(trainer_params, path1)
    model_saver.register(policy)
    model_saver.initialize_or_load(policy)
    policy.set_step(2000)

    mock_brain_name = "MockBrain"
    model_saver.save_checkpoint(mock_brain_name, 2000)

    # Try load from this path
    trainer_params2 = TrainerSettings()
    trainer_params2.network_settings = NetworkSettings(
        hidden_units=10, vis_encode_type=EncoderType(vis_encode_type)
    )
    model_saver2 = TorchModelSaver(trainer_params2, path1, load=True)
    policy2 = create_policy_mock(trainer_params2.network_settings, use_visual=True)
    conv_params2 = [mod for mod in policy2.actor.parameters() if len(mod.shape) > 2]
    # asserts convolutions have different parameters before load
    for conv1, conv2 in zip(conv_params, conv_params2):
        assert not torch.equal(conv1, conv2)
    # asserts layers still have different dimensions
    for mod1, mod2 in zip(policy.actor.parameters(), policy2.actor.parameters()):
        if mod1.shape[0] == 12:
            assert mod2.shape[0] == 10
    model_saver2.register(policy2)
    model_saver2.initialize_or_load(policy2)
    # asserts convolutions have same parameters after load
    for conv1, conv2 in zip(conv_params, conv_params2):
        assert torch.equal(conv1, conv2)
    # asserts layers still have different dimensions
    for mod1, mod2 in zip(policy.actor.parameters(), policy2.actor.parameters()):
        if mod1.shape[0] == 12:
            assert mod2.shape[0] == 10


@pytest.mark.parametrize(
    "optimizer",
    [
        (TorchPPOOptimizer, PPOSettings),
        (TorchSACOptimizer, SACSettings),
        (TorchPOCAOptimizer, POCASettings),
    ],
    ids=["ppo", "sac", "poca"],
)
def test_load_save_optimizer(tmp_path, optimizer):
    OptimizerClass, HyperparametersClass = optimizer

    trainer_settings = TrainerSettings()
    trainer_settings.hyperparameters = HyperparametersClass()
    policy = create_policy_mock(trainer_settings.network_settings, use_discrete=False)
    optimizer = OptimizerClass(policy, trainer_settings)

    # save at path 1
    path1 = os.path.join(tmp_path, "runid1")
    model_saver = TorchModelSaver(trainer_settings, path1)
    model_saver.register(policy)
    model_saver.register(optimizer)
    model_saver.initialize_or_load()
    policy.set_step(2000)
    model_saver.save_checkpoint("MockBrain", 2000)

    # create a new optimizer and policy
    policy2 = create_policy_mock(trainer_settings.network_settings, use_discrete=False)
    optimizer2 = OptimizerClass(policy2, trainer_settings)

    # load weights
    model_saver2 = TorchModelSaver(trainer_settings, path1, load=True)
    model_saver2.register(policy2)
    model_saver2.register(optimizer2)
    model_saver2.initialize_or_load()  # This is to load the optimizers

    # Compare the two optimizers
    _compare_two_optimizers(optimizer, optimizer2)


# TorchPolicy.evalute() returns log_probs instead of all_log_probs like tf does.
# resulting in indeterministic results for testing.
# So here use sample_actions instead.
def _compare_two_policies(policy1: TorchPolicy, policy2: TorchPolicy) -> None:
    """
    Make sure two policies have the same output for the same input.
    """
    policy1.actor = policy1.actor.to(default_device())
    policy2.actor = policy2.actor.to(default_device())

    decision_step, _ = mb.create_steps_from_behavior_spec(
        policy1.behavior_spec, num_agents=1
    )
    np_obs = decision_step.obs
    masks = policy1._extract_masks(decision_step)
    memories = torch.as_tensor(
        policy1.retrieve_memories(list(decision_step.agent_id))
    ).unsqueeze(0)
    tensor_obs = [ModelUtils.list_to_tensor(obs) for obs in np_obs]

    with torch.no_grad():
        _, stat_dict1, _ = policy1.actor.get_action_and_stats(
            tensor_obs, masks=masks, memories=memories
        )
        _, stat_dict2, _ = policy2.actor.get_action_and_stats(
            tensor_obs, masks=masks, memories=memories
        )
        log_probs1 = stat_dict1["log_probs"]
        log_probs2 = stat_dict2["log_probs"]
    np.testing.assert_array_equal(
        ModelUtils.to_numpy(log_probs1.all_discrete_tensor),
        ModelUtils.to_numpy(log_probs2.all_discrete_tensor),
    )


def _compare_two_optimizers(opt1: TorchOptimizer, opt2: TorchOptimizer) -> None:
    trajectory = mb.make_fake_trajectory(
        length=10,
        observation_specs=opt1.policy.behavior_spec.observation_specs,
        action_spec=opt1.policy.behavior_spec.action_spec,
        max_step_complete=True,
    )
    with torch.no_grad():
        _, opt1_val_out, _ = opt1.get_trajectory_value_estimates(
            trajectory.to_agentbuffer(), trajectory.next_obs, done=False
        )
        _, opt2_val_out, _ = opt2.get_trajectory_value_estimates(
            trajectory.to_agentbuffer(), trajectory.next_obs, done=False
        )

    for opt1_val, opt2_val in zip(opt1_val_out.values(), opt2_val_out.values()):
        np.testing.assert_array_equal(opt1_val, opt2_val)


@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"])
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"])
def test_checkpoint_conversion(tmpdir, rnn, visual, discrete):
    dummy_config = TrainerSettings()
    model_path = os.path.join(tmpdir, "Mock_Brain")
    policy = create_policy_mock(
        dummy_config.network_settings,
        use_rnn=rnn,
        use_discrete=discrete,
        use_visual=visual,
    )
    trainer_params = TrainerSettings()
    model_saver = TorchModelSaver(trainer_params, model_path)
    model_saver.register(policy)
    model_saver.save_checkpoint("Mock_Brain", 100)
    assert os.path.isfile(model_path + "/Mock_Brain-100.onnx")