File size: 8,386 Bytes
05c9ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import numpy as np
from mlagents.trainers.buffer import (
    AgentBuffer,
    AgentBufferField,
    BufferKey,
    ObservationKeyPrefix,
    RewardSignalKeyPrefix,
)
from mlagents.trainers.trajectory import ObsUtil


def assert_array(a, b):
    assert a.shape == b.shape
    la = list(a.flatten())
    lb = list(b.flatten())
    for i in range(len(la)):
        assert la[i] == lb[i]


def construct_fake_buffer(fake_agent_id):
    b = AgentBuffer()
    for step in range(9):
        b[ObsUtil.get_name_at(0)].append(
            np.array(
                [
                    100 * fake_agent_id + 10 * step + 1,
                    100 * fake_agent_id + 10 * step + 2,
                    100 * fake_agent_id + 10 * step + 3,
                ],
                dtype=np.float32,
            )
        )
        b[BufferKey.CONTINUOUS_ACTION].append(
            np.array(
                [
                    100 * fake_agent_id + 10 * step + 4,
                    100 * fake_agent_id + 10 * step + 5,
                ],
                dtype=np.float32,
            )
        )
        b[BufferKey.GROUP_CONTINUOUS_ACTION].append(
            [
                np.array(
                    [
                        100 * fake_agent_id + 10 * step + 4,
                        100 * fake_agent_id + 10 * step + 5,
                    ],
                    dtype=np.float32,
                )
            ]
            * 3
        )
    return b


def test_buffer():
    agent_1_buffer = construct_fake_buffer(1)
    agent_2_buffer = construct_fake_buffer(2)
    agent_3_buffer = construct_fake_buffer(3)

    # Test get_batch
    a = agent_1_buffer[ObsUtil.get_name_at(0)].get_batch(
        batch_size=2, training_length=1, sequential=True
    )
    assert_array(
        np.array(a), np.array([[171, 172, 173], [181, 182, 183]], dtype=np.float32)
    )

    # Test get_batch
    a = agent_2_buffer[ObsUtil.get_name_at(0)].get_batch(
        batch_size=2, training_length=3, sequential=True
    )
    assert_array(
        np.array(a),
        np.array(
            [
                [231, 232, 233],
                [241, 242, 243],
                [251, 252, 253],
                [261, 262, 263],
                [271, 272, 273],
                [281, 282, 283],
            ],
            dtype=np.float32,
        ),
    )
    a = agent_2_buffer[ObsUtil.get_name_at(0)].get_batch(
        batch_size=2, training_length=3, sequential=False
    )
    assert_array(
        np.array(a),
        np.array(
            [
                [251, 252, 253],
                [261, 262, 263],
                [271, 272, 273],
                [261, 262, 263],
                [271, 272, 273],
                [281, 282, 283],
            ]
        ),
    )

    # Test padding
    a = agent_2_buffer[ObsUtil.get_name_at(0)].get_batch(
        batch_size=None, training_length=4, sequential=True
    )
    assert_array(
        np.array(a),
        np.array(
            [
                [201, 202, 203],
                [211, 212, 213],
                [221, 222, 223],
                [231, 232, 233],
                [241, 242, 243],
                [251, 252, 253],
                [261, 262, 263],
                [271, 272, 273],
                [281, 282, 283],
                [0, 0, 0],
                [0, 0, 0],
                [0, 0, 0],
            ]
        ),
    )
    # Test group entries return Lists of Lists. Make sure to pad properly!
    a = agent_2_buffer[BufferKey.GROUP_CONTINUOUS_ACTION].get_batch(
        batch_size=None, training_length=4, sequential=True
    )
    for _group_entry in a[:-3]:
        assert len(_group_entry) == 3
    for _group_entry in a[-3:]:
        assert len(_group_entry) == 0

    agent_1_buffer.reset_agent()
    assert agent_1_buffer.num_experiences == 0
    update_buffer = AgentBuffer()
    agent_2_buffer.resequence_and_append(
        update_buffer, batch_size=None, training_length=2
    )
    agent_3_buffer.resequence_and_append(
        update_buffer, batch_size=None, training_length=2
    )
    assert len(update_buffer[BufferKey.CONTINUOUS_ACTION]) == 20

    assert np.array(update_buffer[BufferKey.CONTINUOUS_ACTION]).shape == (20, 2)

    c = update_buffer.make_mini_batch(start=0, end=1)
    assert c.keys() == update_buffer.keys()
    # Make sure the values of c are AgentBufferField
    for val in c.values():
        assert isinstance(val, AgentBufferField)
    assert np.array(c[BufferKey.CONTINUOUS_ACTION]).shape == (1, 2)


def test_agentbufferfield():
    # Test constructor
    a = AgentBufferField([0, 1, 2])
    for i, num in enumerate(a):
        assert num == i
        # Test indexing
        assert a[i] == num

    # Test slicing
    b = a[1:3]
    assert b == [1, 2]
    assert isinstance(b, AgentBufferField)

    # Test padding
    c = AgentBufferField()
    for _ in range(2):
        c.append([np.array(1), np.array(2)])

    for _ in range(2):
        c.append([np.array(1)])

    padded = c.padded_to_batch(pad_value=3)
    assert np.array_equal(padded[0], np.array([1, 1, 1, 1]))
    assert np.array_equal(padded[1], np.array([2, 2, 3, 3]))

    # Make sure it doesn't fail when the field isn't a list
    padded_a = a.padded_to_batch()
    assert np.array_equal(padded_a, a)


def fakerandint(values):
    return 19


def test_buffer_sample():
    agent_1_buffer = construct_fake_buffer(1)
    agent_2_buffer = construct_fake_buffer(2)
    update_buffer = AgentBuffer()
    agent_1_buffer.resequence_and_append(
        update_buffer, batch_size=None, training_length=2
    )
    agent_2_buffer.resequence_and_append(
        update_buffer, batch_size=None, training_length=2
    )
    # Test non-LSTM
    mb = update_buffer.sample_mini_batch(batch_size=4, sequence_length=1)
    assert mb.keys() == update_buffer.keys()
    assert np.array(mb[BufferKey.CONTINUOUS_ACTION]).shape == (4, 2)

    # Test LSTM
    # We need to check if we ever get a breaking start - this will maximize the probability
    mb = update_buffer.sample_mini_batch(batch_size=20, sequence_length=19)
    assert mb.keys() == update_buffer.keys()
    # Should only return one sequence
    assert np.array(mb[BufferKey.CONTINUOUS_ACTION]).shape == (19, 2)


def test_num_experiences():
    agent_1_buffer = construct_fake_buffer(1)
    agent_2_buffer = construct_fake_buffer(2)
    update_buffer = AgentBuffer()

    assert len(update_buffer[BufferKey.CONTINUOUS_ACTION]) == 0
    assert update_buffer.num_experiences == 0
    agent_1_buffer.resequence_and_append(
        update_buffer, batch_size=None, training_length=2
    )
    agent_2_buffer.resequence_and_append(
        update_buffer, batch_size=None, training_length=2
    )

    assert len(update_buffer[BufferKey.CONTINUOUS_ACTION]) == 20
    assert update_buffer.num_experiences == 20


def test_buffer_truncate():
    agent_1_buffer = construct_fake_buffer(1)
    agent_2_buffer = construct_fake_buffer(2)
    update_buffer = AgentBuffer()
    agent_1_buffer.resequence_and_append(
        update_buffer, batch_size=None, training_length=2
    )
    agent_2_buffer.resequence_and_append(
        update_buffer, batch_size=None, training_length=2
    )
    # Test non-LSTM
    update_buffer.truncate(2)
    assert update_buffer.num_experiences == 2

    agent_1_buffer.resequence_and_append(
        update_buffer, batch_size=None, training_length=2
    )
    agent_2_buffer.resequence_and_append(
        update_buffer, batch_size=None, training_length=2
    )
    # Test LSTM, truncate should be some multiple of sequence_length
    update_buffer.truncate(4, sequence_length=3)
    assert update_buffer.num_experiences == 3
    for buffer_field in update_buffer.values():
        assert isinstance(buffer_field, AgentBufferField)


def test_key_encode_decode():
    keys = (
        list(BufferKey)
        + [(k, 42) for k in ObservationKeyPrefix]
        + [(k, "gail") for k in RewardSignalKeyPrefix]
    )
    for k in keys:
        assert k == AgentBuffer._decode_key(AgentBuffer._encode_key(k))


def test_buffer_save_load():
    original = construct_fake_buffer(3)
    import io

    write_buffer = io.BytesIO()
    original.save_to_file(write_buffer)

    loaded = AgentBuffer()
    loaded.load_from_file(write_buffer)

    assert len(original) == len(loaded)
    for k in original.keys():
        assert np.allclose(original[k], loaded[k])