File size: 2,897 Bytes
07a2071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
tags:
- summarization
- mT5
datasets:
- csebuetnlp/xlsum
language:
- ne
widget:
- text: तीन नगरपालिकालाई समेटेर भेरी किनारमा बन्न थालेको आधुनिक नमुना सहरको काम तीव्र गतिमा अघि बढेको  भेरीगंगा, गुर्भाकोट  लेकबेंसी नगरपालिकामा बन्न थालेको भेरीगंगा उपत्यका नमुना आधुनिक सहर निर्माण हुन लागेको हो यसले नदी वारि  पारिको  सय ६० वर्ग किलोमिटर क्षेत्रलाई समेट्नेछ
model-index:
- name: Anjaan-Khadka/summarization_nepali
  results:
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: xsum
      type: xsum
      config: default
      split: test
    metrics:
    - name: ROUGE-1
      type: rouge
      value: 36.5002
      verified: false
    
---

# adaptation of mT5-multilingual-XLSum for Nepali Lnaguage

This repository contains adapted version of mT5-multilinguag-XLSum for Single Language (Nepali). View original [mT5-multilinguag-XLSum model](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum)

## Using this model in `transformers` (tested on 4.11.0.dev0)

```python
import re
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

article_text = " तीन नगरपालिकालाई समेटेर भेरी किनारमा बन्न थालेको आधुनिक नमुना सहरको काम तीव्र गतिमा अघि बढेको छ । भेरीगंगा, गुर्भाकोट र लेकबेंसी नगरपालिकामा बन्न थालेको भेरीगंगा उपत्यका नमुना आधुनिक सहर निर्माण हुन लागेको हो । यसले नदी वारि र पारिको ४ सय ६० वर्ग किलोमिटर क्षेत्रलाई समेट्नेछ ।"

model_name = "Anjaan-Khadka/summarization_nepali"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

input_ids = tokenizer(
    (article_text),
    return_tensors="pt",
    padding="max_length",
    truncation=True,
    max_length=512
)["input_ids"]

output_ids = model.generate(
    input_ids=input_ids,
    max_length=84,
    no_repeat_ngram_size=2,
    num_beams=4
)[0]

summary = tokenizer.decode(
    output_ids,
    skip_special_tokens=True,
    clean_up_tokenization_spaces=False
)

print(summary)

```