metadata
license: gpl-3.0
language:
- ru
tags:
- russian
- classification
- emotion
- emotion-detection
- emotion-recognition
- multiclass
widget:
- text: Как дела?
- text: Дурак твой дед
- text: Только попробуй!!!
- text: Не хочу в школу(
- text: Сейчас ровно час дня
- text: >-
А ты уверен, что эти полоски снизу не врут? Точно уверен? Вот прям 100
процентов?
datasets:
- Aniemore/cedr-m7
model-index:
- name: RuBERT tiny2 For Russian Text Emotion Detection by Ilya Lubenets
results:
- task:
name: Multilabel Text Classification
type: multilabel-text-classification
dataset:
name: CEDR M7
type: Aniemore/cedr-m7
args: ru
metrics:
- name: multilabel accuracy
type: accuracy
value: 85%
- task:
name: Text Classification
type: text-classification
dataset:
name: CEDR M7
type: Aniemore/cedr-m7
args: ru
metrics:
- name: accuracy
type: accuracy
value: 76%
First - you should prepare few functions to talk to model
import torch
from transformers import BertForSequenceClassification, AutoTokenizer
LABELS = ['neutral', 'happiness', 'sadness', 'enthusiasm', 'fear', 'anger', 'disgust']
tokenizer = AutoTokenizer.from_pretrained('Aniemore/rubert-tiny2-russian-emotion-detection')
model = BertForSequenceClassification.from_pretrained('Aniemore/rubert-tiny2-russian-emotion-detection')
@torch.no_grad()
def predict_emotion(text: str) -> str:
"""
We take the input text, tokenize it, pass it through the model, and then return the predicted label
:param text: The text to be classified
:type text: str
:return: The predicted emotion
"""
inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**inputs)
predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
predicted = torch.argmax(predicted, dim=1).numpy()
return LABELS[predicted[0]]
@torch.no_grad()
def predict_emotions(text: str) -> list:
"""
It takes a string of text, tokenizes it, feeds it to the model, and returns a dictionary of emotions and their
probabilities
:param text: The text you want to classify
:type text: str
:return: A dictionary of emotions and their probabilities.
"""
inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**inputs)
predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
emotions_list = {}
for i in range(len(predicted.numpy()[0].tolist())):
emotions_list[LABELS[i]] = predicted.numpy()[0].tolist()[i]
return emotions_list
And then - just gently ask a model to predict your emotion
simple_prediction = predict_emotion("Какой же сегодня прекрасный день, братья")
not_simple_prediction = predict_emotions("Какой же сегодня прекрасный день, братья")
print(simple_prediction)
print(not_simple_prediction)
# happiness
# {'neutral': 0.0004941817605867982, 'happiness': 0.9979524612426758, 'sadness': 0.0002536600804887712, 'enthusiasm': 0.0005498139653354883, 'fear': 0.00025326196919195354, 'anger': 0.0003583927755244076, 'disgust': 0.00013807788491249084}
Or, just simply use our package (GitHub), that can do whatever you want (or maybe not)
🤗
Citations
@misc{Aniemore,
author = {Артем Аментес, Илья Лубенец, Никита Давидчук},
title = {Открытая библиотека искусственного интеллекта для анализа и выявления эмоциональных оттенков речи человека},
year = {2022},
publisher = {Hugging Face},
journal = {Hugging Face Hub},
howpublished = {\url{https://huggingface.com/aniemore/Aniemore}},
email = {hello@socialcode.ru}
}