File size: 1,012 Bytes
612a5ad cd726ab 5011af8 cd726ab 847fc06 612a5ad cd726ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
library_name: transformers
license: creativeml-openrail-m
language:
- en
metrics:
- accuracy
tags:
- qlora
- peft
- prompts
datasets:
- knkarthick/dialogsum
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
```
# adding back the LoRA adopters to the base Llama-2 model
lora_config = LoraConfig.from_pretrained('Andyrasika/qlora-dialogue-summary')
model = get_peft_model(model, lora_config)
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'], max_new_tokens=100 ,repetition_penalty=1.2)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
``` |