File size: 18,943 Bytes
1e45055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import math
import logging
from functools import partial
from collections import OrderedDict
from einops import rearrange, repeat
import numpy as np
from common.arguments import parse_args

import torch
import torch.nn as nn
import torch.nn.functional as F

import time

from math import sqrt

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model

class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., changedim=False, currentdim=0, depth=0):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features

        self.fc1 = nn.Linear(in_features, hidden_features)
        
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., comb=False, vis=False,  bonechain=None):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim) 

        self.proj_drop = nn.Dropout(proj_drop)
        self.comb = comb
        self.vis = vis

        self.bonechain = bonechain


    def forward(self, x, vis=False):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # Now x shape (3, B, heads, N, C//heads)       
        q, k, v = qkv[0], qkv[1], qkv[2]   # make torchscript happy (cannot use tensor as tuple)

        if self.comb==True:
            attn = (q.transpose(-2, -1) @ k) * self.scale
        elif self.comb==False:
            attn = (q @ k.transpose(-2, -1)) * self.scale

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        
        if self.comb==True:
            x = (attn @ v.transpose(-2, -1)).transpose(-2, -1)
            x = rearrange(x, 'B H N C -> B N (H C)')
        elif self.comb==False:
            x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

class Attention_xxc(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., comb=False, vis=False, bonechain=None):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.qkv_xc = nn.Linear(dim, dim , bias=qkv_bias)

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim) 

        self.proj_drop = nn.Dropout(proj_drop)
        self.comb = comb
        self.vis = vis

        self.bonechain = bonechain



    def forward(self, x, xc=None, vis=False):
        B, N, C = x.shape

        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        if xc==None:
            pass
        else:
            qkv_xc = self.qkv_xc(xc).reshape(B, N, 1, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
            k_xc = qkv_xc[0]

        # Now x shape (3, B, heads, N, C//heads)       
        q, k, v = qkv[0], qkv[1], qkv[2]   # make torchscript happy (cannot use tensor as tuple)

        if self.comb==True:
            attn = (q.transpose(-2, -1) @ k) * self.scale
        elif self.comb==False:
            attn = (q @ k.transpose(-2, -1)) * self.scale

        if q.shape[-2]==17:
            for chain in self.bonechain:
                for idx in range(1,len(chain)-1):
                    ppidx = chain[idx-1]
                    pidx = chain[idx]
                    cidx = chain[idx+1]
                    attn[:,:,pidx,cidx] = (attn[:,:,pidx,cidx] + attn[:,:,ppidx,pidx]) /2.0
                    attn[:,:,cidx,pidx] = (attn[:,:,cidx,pidx] + attn[:,:,ppidx,pidx]) /2.0

        else:
            if self.comb==True:
                xc_attn = (q.transpose(-2, -1) @ k_xc) * self.scale
            elif self.comb==False:
                xc_attn = (q @ k_xc.transpose(-2, -1)) * self.scale         
            attn += xc_attn

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        
        if self.comb==True:
            x = (attn @ v.transpose(-2, -1)).transpose(-2, -1)
            x = rearrange(x, 'B H N C -> B N (H C)')
        elif self.comb==False:
            x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., attention=Attention, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, comb=False, changedim=False, currentdim=0, depth=0, vis=False, bonechain=None):
        super().__init__()

        self.changedim = changedim
        self.currentdim = currentdim
        self.depth = depth
        if self.changedim:
            assert self.depth>0

        self.norm1 = norm_layer(dim)
        self.attn = attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, comb=comb, vis=vis, bonechain=bonechain)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        
        if self.changedim and self.currentdim < self.depth//2:
            self.reduction = nn.Conv1d(dim, dim//2, kernel_size=1)
            # self.reduction = nn.Linear(dim, dim//2)
        elif self.changedim and depth > self.currentdim > self.depth//2:
            self.improve = nn.Conv1d(dim, dim*2, kernel_size=1)
            # self.improve = nn.Linear(dim, dim*2)
        self.vis = vis


    def forward(self, x, vis=False):
        x = x + self.drop_path(self.attn(self.norm1(x), vis=vis))
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        if self.changedim and self.currentdim < self.depth//2:
            x = rearrange(x, 'b t c -> b c t')
            x = self.reduction(x)
            x = rearrange(x, 'b c t -> b t c')
        elif self.changedim and self.depth > self.currentdim > self.depth//2:
            x = rearrange(x, 'b t c -> b c t')
            x = self.improve(x)
            x = rearrange(x, 'b c t -> b t c')
        return x
    
class Block_xxc(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., attention=Attention_xxc, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, comb=False, changedim=False, currentdim=0, depth=0, vis=False, bonechain=None):
        super().__init__()

        self.changedim = changedim
        self.currentdim = currentdim
        self.depth = depth
        if self.changedim:
            assert self.depth>0

        self.norm1 = norm_layer(dim)
        self.attn = attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, comb=comb, vis=vis, bonechain=bonechain)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        
        if self.changedim and self.currentdim < self.depth//2:
            self.reduction = nn.Conv1d(dim, dim//2, kernel_size=1)
            # self.reduction = nn.Linear(dim, dim//2)
        elif self.changedim and depth > self.currentdim > self.depth//2:
            self.improve = nn.Conv1d(dim, dim*2, kernel_size=1)
            # self.improve = nn.Linear(dim, dim*2)
        self.vis = vis


    def forward(self, x, xc=None, vis=False):
        if xc==None:
            x = x + self.drop_path(self.attn(self.norm1(x), vis=vis))
            x = x + self.drop_path(self.mlp(self.norm2(x)))        
        else:   
            x = x + self.drop_path(self.attn(self.norm1(x), self.norm1(xc), vis=vis))
            x = x + self.drop_path(self.mlp(self.norm2(x)))

        if self.changedim and self.currentdim < self.depth//2:
            x = rearrange(x, 'b t c -> b c t')
            x = self.reduction(x)
            x = rearrange(x, 'b c t -> b t c')
        elif self.changedim and self.depth > self.currentdim > self.depth//2:
            x = rearrange(x, 'b t c -> b c t')
            x = self.improve(x)
            x = rearrange(x, 'b c t -> b t c')
        return x

class SinusoidalPositionEmbeddings(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, time):
        device = time.device
        half_dim = self.dim // 2
        embeddings = math.log(10000) / (half_dim - 1)
        embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings)
        embeddings = time[:, None] * embeddings[None, :]
        embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)
        return embeddings

class  MixSTE2(nn.Module):
    def __init__(self, num_frame=9, num_joints=17, in_chans=2, embed_dim_ratio=32, depth=4,
                 num_heads=8, mlp_ratio=2., qkv_bias=True, qk_scale=None,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2,  norm_layer=None, is_train=True):
        """    ##########hybrid_backbone=None, representation_size=None,
        Args:
            num_frame (int, tuple): input frame number
            num_joints (int, tuple): joints number
            in_chans (int): number of input channels, 2D joints have 2 channels: (x,y)
            embed_dim_ratio (int): embedding dimension ratio
            depth (int): depth of transformer
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            qk_scale (float): override default qk scale of head_dim ** -0.5 if set
            drop_rate (float): dropout rate
            attn_drop_rate (float): attention dropout rate
            drop_path_rate (float): stochastic depth rate
            norm_layer: (nn.Module): normalization layer
        """
        super().__init__()

        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        embed_dim = embed_dim_ratio   #### temporal embed_dim is num_joints * spatial embedding dim ratio
        out_dim = 3     #### output dimension is num_joints * 3
        self.is_train=is_train
        
        ### spatial patch embedding
        self.Spatial_patch_to_embedding = nn.Linear(in_chans + 3 + 1 , embed_dim_ratio)

        self.Spatial_pos_embed = nn.Parameter(torch.zeros(1, num_joints, embed_dim_ratio))


        self.Temporal_pos_embed = nn.Parameter(torch.zeros(1, num_frame, embed_dim))


        self.pos_drop = nn.Dropout(p=drop_rate)

        self.time_mlp = nn.Sequential(
            SinusoidalPositionEmbeddings(embed_dim_ratio),
            nn.Linear(embed_dim_ratio, embed_dim_ratio*2),
            nn.GELU(),
            nn.Linear(embed_dim_ratio*2, embed_dim_ratio),
        )

        self.group = nn.Parameter(torch.zeros(1, 6, embed_dim))
        self.lev0_list = [0]
        self.lev1_list = [1,4,7]
        self.lev2_list = [2,5,8]
        self.lev3_list = [3,6,9,11,14]
        self.lev4_list = [10,12,15]
        self.lev5_list = [13,16]

        boneindex = []
        args = parse_args()
        boneindextemp = args.boneindex_h36m.split(',')
        boneindex = []
        for i in range(0,len(boneindextemp),2):
            boneindex.append([int(boneindextemp[i]), int(boneindextemp[i+1])])
        self.boneindex = boneindex

        bonechain = [[0,1,2,3],[0,4,5,6],[0,7,8,9,10],[0,7,8,11,12,13],[0,7,8,14,15,16]]

        self.bonedic = {0:'1,4,7', 1:'2', 2:'3', 3:None, 4:'5', 5:'6', 6:None, 7:'8', 8:'9,11,14', 9:'10', 10:None, 11:'12', 12:'13', 13:None, 14:'15', 15:'16', 16:None}

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.block_depth = depth

        self.STEblocks_0 = nn.ModuleList([            
            Block(
                dim=embed_dim_ratio, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[0], norm_layer=norm_layer, bonechain=bonechain)])
        self.STEblocks = nn.ModuleList([
            # Block: Attention Block
            Block_xxc(
                dim=embed_dim_ratio, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, bonechain=bonechain)
            for i in range(1,depth)])

        self.TTEblocks_0 = nn.ModuleList([            
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[0], norm_layer=norm_layer, comb=False, changedim=False, currentdim=1, depth=depth, bonechain=bonechain)])
        self.TTEblocks = nn.ModuleList([
            Block_xxc(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, comb=False, changedim=False, currentdim=i+1, depth=depth, bonechain=bonechain)
            for i in range(1,depth)])

        self.Spatial_norm = norm_layer(embed_dim_ratio)
        self.Temporal_norm = norm_layer(embed_dim)

        self.head_pose = nn.Sequential(
            nn.LayerNorm(embed_dim),
            nn.Linear(embed_dim , out_dim),
        )


    def STE_forward(self, x_2d, x_3d, t):

        if self.is_train:
            x = torch.cat((x_2d, x_3d), dim=-1)
            b, f, n, c = x.shape  ##### b is batch size, f is number of frames, n is number of joints, c is channel size?
            x = rearrange(x, 'b f n c  -> (b f) n c', )
            ### now x is [batch_size, receptive frames, joint_num, 2 channels]

            x = self.Spatial_patch_to_embedding(x)

            # Hierarchical embedding.
            for lev in range(6):
                lev_list = eval('self.lev{:}_list'.format(lev))
                for idx in lev_list:
                    x[:,idx,:] += self.group[0][lev:lev+1]

            x += self.Spatial_pos_embed

            time_embed = self.time_mlp(t)[:, None, None, :].repeat(1,f,n,1)
            time_embed = rearrange(time_embed, 'b f n c  -> (b f) n c', )
            x += time_embed
        else:
            x_2d = x_2d[:,None].repeat(1,x_3d.shape[1],1,1,1)
            x = torch.cat((x_2d, x_3d), dim=-1)
            b, h, f, n, c = x.shape  ##### b is batch size, f is number of frames, n is number of joints, c is channel size
            x = rearrange(x, 'b h f n c  -> (b h f) n c', )

            x = self.Spatial_patch_to_embedding(x)

            # Hierarchical encoding.
            for lev in range(6):
                lev_list = eval('self.lev{:}_list'.format(lev))
                for idx in lev_list:
                    x[:,idx,:] += self.group[0][lev:lev+1]
            x += self.Spatial_pos_embed
            time_embed = self.time_mlp(t)[:, None, None, None, :].repeat(1, h, f, n, 1)
            time_embed = rearrange(time_embed, 'b h f n c  -> (b h f) n c', )
            x += time_embed

        x = self.pos_drop(x)

        blk = self.STEblocks_0[0]
        x = blk(x)
        # x = blk(x, vis=True)

        x = self.Spatial_norm(x)
        x = rearrange(x, '(b f) n cw -> (b n) f cw', f=f)
        return x

    def TTE_foward(self, x):
        assert len(x.shape) == 3, "shape is equal to 3"
        b, f, _  = x.shape
        x += self.Temporal_pos_embed
        x = self.pos_drop(x)        

        blk = self.TTEblocks_0[0]
        x = blk(x)

        x = self.Temporal_norm(x)
        return x

    def ST_foward(self, x,xc):
        assert len(x.shape)==4, "shape is equal to 4"
        b, f, n, cw = x.shape

        for i in range(0, self.block_depth-1):
            x = rearrange(x, 'b f n cw -> (b f) n cw')
            steblock = self.STEblocks[i]
            tteblock = self.TTEblocks[i]
            
            x = steblock(x)
            x = self.Spatial_norm(x)
            x = rearrange(x, '(b f) n cw -> (b n) f cw', f=f)

            x = tteblock(x,xc)
            x = self.Temporal_norm(x)
            x = rearrange(x, '(b n) f cw -> b f n cw', n=n)

        return x

    # 在经过STE(把STE中包含的HRST去掉)和TTE后分出xc, 后7层都用同样的Block_xxc
    def forward(self, x_2d, x_3d_dir, x_3d_bone, t):
        x_3d = torch.cat((x_3d_dir,x_3d_bone), dim=-1)
        if self.is_train:
            b, f, n, c = x_2d.shape
        else:
            b, h, f, n, c = x_3d.shape

        x_2d, t = x_2d.float(), t.float()

        x = self.STE_forward(x_2d, x_3d, t,)

        x = self.TTE_foward(x)

        x = rearrange(x, '(b n) f cw -> b f n cw', n=n)

        xc_list = []
        xc = x.clone()
        for idx in range(17):
            pidx = idx
            if self.bonedic[idx]:
                cidx = [int(x) for x in self.bonedic[idx].split(',')]
                xc_cidx = xc[:,:,cidx]
                xc_cidx = torch.cat((xc_cidx , xc[:,:,pidx:pidx+1]),dim=2).mean(2)
            else:
                xc_cidx = xc[:,:,pidx:pidx+1].squeeze(2)
            xc_list.append(xc_cidx)
        xc = torch.stack(xc_list,dim=2)

        x = self.ST_foward(x,xc)

        x_pos = self.head_pose(x)
        if self.is_train:
            x_pos = x_pos.view(b, f, n, -1)
        else:
            x_pos = x_pos.view(b, h, f, n, -1)

        return x_pos