File size: 18,943 Bytes
1e45055 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import math
import logging
from functools import partial
from collections import OrderedDict
from einops import rearrange, repeat
import numpy as np
from common.arguments import parse_args
import torch
import torch.nn as nn
import torch.nn.functional as F
import time
from math import sqrt
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., changedim=False, currentdim=0, depth=0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., comb=False, vis=False, bonechain=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.comb = comb
self.vis = vis
self.bonechain = bonechain
def forward(self, x, vis=False):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
# Now x shape (3, B, heads, N, C//heads)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
if self.comb==True:
attn = (q.transpose(-2, -1) @ k) * self.scale
elif self.comb==False:
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
if self.comb==True:
x = (attn @ v.transpose(-2, -1)).transpose(-2, -1)
x = rearrange(x, 'B H N C -> B N (H C)')
elif self.comb==False:
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Attention_xxc(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., comb=False, vis=False, bonechain=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.qkv_xc = nn.Linear(dim, dim , bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.comb = comb
self.vis = vis
self.bonechain = bonechain
def forward(self, x, xc=None, vis=False):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
if xc==None:
pass
else:
qkv_xc = self.qkv_xc(xc).reshape(B, N, 1, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k_xc = qkv_xc[0]
# Now x shape (3, B, heads, N, C//heads)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
if self.comb==True:
attn = (q.transpose(-2, -1) @ k) * self.scale
elif self.comb==False:
attn = (q @ k.transpose(-2, -1)) * self.scale
if q.shape[-2]==17:
for chain in self.bonechain:
for idx in range(1,len(chain)-1):
ppidx = chain[idx-1]
pidx = chain[idx]
cidx = chain[idx+1]
attn[:,:,pidx,cidx] = (attn[:,:,pidx,cidx] + attn[:,:,ppidx,pidx]) /2.0
attn[:,:,cidx,pidx] = (attn[:,:,cidx,pidx] + attn[:,:,ppidx,pidx]) /2.0
else:
if self.comb==True:
xc_attn = (q.transpose(-2, -1) @ k_xc) * self.scale
elif self.comb==False:
xc_attn = (q @ k_xc.transpose(-2, -1)) * self.scale
attn += xc_attn
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
if self.comb==True:
x = (attn @ v.transpose(-2, -1)).transpose(-2, -1)
x = rearrange(x, 'B H N C -> B N (H C)')
elif self.comb==False:
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., attention=Attention, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, comb=False, changedim=False, currentdim=0, depth=0, vis=False, bonechain=None):
super().__init__()
self.changedim = changedim
self.currentdim = currentdim
self.depth = depth
if self.changedim:
assert self.depth>0
self.norm1 = norm_layer(dim)
self.attn = attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, comb=comb, vis=vis, bonechain=bonechain)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if self.changedim and self.currentdim < self.depth//2:
self.reduction = nn.Conv1d(dim, dim//2, kernel_size=1)
# self.reduction = nn.Linear(dim, dim//2)
elif self.changedim and depth > self.currentdim > self.depth//2:
self.improve = nn.Conv1d(dim, dim*2, kernel_size=1)
# self.improve = nn.Linear(dim, dim*2)
self.vis = vis
def forward(self, x, vis=False):
x = x + self.drop_path(self.attn(self.norm1(x), vis=vis))
x = x + self.drop_path(self.mlp(self.norm2(x)))
if self.changedim and self.currentdim < self.depth//2:
x = rearrange(x, 'b t c -> b c t')
x = self.reduction(x)
x = rearrange(x, 'b c t -> b t c')
elif self.changedim and self.depth > self.currentdim > self.depth//2:
x = rearrange(x, 'b t c -> b c t')
x = self.improve(x)
x = rearrange(x, 'b c t -> b t c')
return x
class Block_xxc(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., attention=Attention_xxc, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, comb=False, changedim=False, currentdim=0, depth=0, vis=False, bonechain=None):
super().__init__()
self.changedim = changedim
self.currentdim = currentdim
self.depth = depth
if self.changedim:
assert self.depth>0
self.norm1 = norm_layer(dim)
self.attn = attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, comb=comb, vis=vis, bonechain=bonechain)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if self.changedim and self.currentdim < self.depth//2:
self.reduction = nn.Conv1d(dim, dim//2, kernel_size=1)
# self.reduction = nn.Linear(dim, dim//2)
elif self.changedim and depth > self.currentdim > self.depth//2:
self.improve = nn.Conv1d(dim, dim*2, kernel_size=1)
# self.improve = nn.Linear(dim, dim*2)
self.vis = vis
def forward(self, x, xc=None, vis=False):
if xc==None:
x = x + self.drop_path(self.attn(self.norm1(x), vis=vis))
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.attn(self.norm1(x), self.norm1(xc), vis=vis))
x = x + self.drop_path(self.mlp(self.norm2(x)))
if self.changedim and self.currentdim < self.depth//2:
x = rearrange(x, 'b t c -> b c t')
x = self.reduction(x)
x = rearrange(x, 'b c t -> b t c')
elif self.changedim and self.depth > self.currentdim > self.depth//2:
x = rearrange(x, 'b t c -> b c t')
x = self.improve(x)
x = rearrange(x, 'b c t -> b t c')
return x
class SinusoidalPositionEmbeddings(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, time):
device = time.device
half_dim = self.dim // 2
embeddings = math.log(10000) / (half_dim - 1)
embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings)
embeddings = time[:, None] * embeddings[None, :]
embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)
return embeddings
class MixSTE2(nn.Module):
def __init__(self, num_frame=9, num_joints=17, in_chans=2, embed_dim_ratio=32, depth=4,
num_heads=8, mlp_ratio=2., qkv_bias=True, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, norm_layer=None, is_train=True):
""" ##########hybrid_backbone=None, representation_size=None,
Args:
num_frame (int, tuple): input frame number
num_joints (int, tuple): joints number
in_chans (int): number of input channels, 2D joints have 2 channels: (x,y)
embed_dim_ratio (int): embedding dimension ratio
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
norm_layer: (nn.Module): normalization layer
"""
super().__init__()
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
embed_dim = embed_dim_ratio #### temporal embed_dim is num_joints * spatial embedding dim ratio
out_dim = 3 #### output dimension is num_joints * 3
self.is_train=is_train
### spatial patch embedding
self.Spatial_patch_to_embedding = nn.Linear(in_chans + 3 + 1 , embed_dim_ratio)
self.Spatial_pos_embed = nn.Parameter(torch.zeros(1, num_joints, embed_dim_ratio))
self.Temporal_pos_embed = nn.Parameter(torch.zeros(1, num_frame, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
self.time_mlp = nn.Sequential(
SinusoidalPositionEmbeddings(embed_dim_ratio),
nn.Linear(embed_dim_ratio, embed_dim_ratio*2),
nn.GELU(),
nn.Linear(embed_dim_ratio*2, embed_dim_ratio),
)
self.group = nn.Parameter(torch.zeros(1, 6, embed_dim))
self.lev0_list = [0]
self.lev1_list = [1,4,7]
self.lev2_list = [2,5,8]
self.lev3_list = [3,6,9,11,14]
self.lev4_list = [10,12,15]
self.lev5_list = [13,16]
boneindex = []
args = parse_args()
boneindextemp = args.boneindex_h36m.split(',')
boneindex = []
for i in range(0,len(boneindextemp),2):
boneindex.append([int(boneindextemp[i]), int(boneindextemp[i+1])])
self.boneindex = boneindex
bonechain = [[0,1,2,3],[0,4,5,6],[0,7,8,9,10],[0,7,8,11,12,13],[0,7,8,14,15,16]]
self.bonedic = {0:'1,4,7', 1:'2', 2:'3', 3:None, 4:'5', 5:'6', 6:None, 7:'8', 8:'9,11,14', 9:'10', 10:None, 11:'12', 12:'13', 13:None, 14:'15', 15:'16', 16:None}
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.block_depth = depth
self.STEblocks_0 = nn.ModuleList([
Block(
dim=embed_dim_ratio, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[0], norm_layer=norm_layer, bonechain=bonechain)])
self.STEblocks = nn.ModuleList([
# Block: Attention Block
Block_xxc(
dim=embed_dim_ratio, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, bonechain=bonechain)
for i in range(1,depth)])
self.TTEblocks_0 = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[0], norm_layer=norm_layer, comb=False, changedim=False, currentdim=1, depth=depth, bonechain=bonechain)])
self.TTEblocks = nn.ModuleList([
Block_xxc(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, comb=False, changedim=False, currentdim=i+1, depth=depth, bonechain=bonechain)
for i in range(1,depth)])
self.Spatial_norm = norm_layer(embed_dim_ratio)
self.Temporal_norm = norm_layer(embed_dim)
self.head_pose = nn.Sequential(
nn.LayerNorm(embed_dim),
nn.Linear(embed_dim , out_dim),
)
def STE_forward(self, x_2d, x_3d, t):
if self.is_train:
x = torch.cat((x_2d, x_3d), dim=-1)
b, f, n, c = x.shape ##### b is batch size, f is number of frames, n is number of joints, c is channel size?
x = rearrange(x, 'b f n c -> (b f) n c', )
### now x is [batch_size, receptive frames, joint_num, 2 channels]
x = self.Spatial_patch_to_embedding(x)
# Hierarchical embedding.
for lev in range(6):
lev_list = eval('self.lev{:}_list'.format(lev))
for idx in lev_list:
x[:,idx,:] += self.group[0][lev:lev+1]
x += self.Spatial_pos_embed
time_embed = self.time_mlp(t)[:, None, None, :].repeat(1,f,n,1)
time_embed = rearrange(time_embed, 'b f n c -> (b f) n c', )
x += time_embed
else:
x_2d = x_2d[:,None].repeat(1,x_3d.shape[1],1,1,1)
x = torch.cat((x_2d, x_3d), dim=-1)
b, h, f, n, c = x.shape ##### b is batch size, f is number of frames, n is number of joints, c is channel size
x = rearrange(x, 'b h f n c -> (b h f) n c', )
x = self.Spatial_patch_to_embedding(x)
# Hierarchical encoding.
for lev in range(6):
lev_list = eval('self.lev{:}_list'.format(lev))
for idx in lev_list:
x[:,idx,:] += self.group[0][lev:lev+1]
x += self.Spatial_pos_embed
time_embed = self.time_mlp(t)[:, None, None, None, :].repeat(1, h, f, n, 1)
time_embed = rearrange(time_embed, 'b h f n c -> (b h f) n c', )
x += time_embed
x = self.pos_drop(x)
blk = self.STEblocks_0[0]
x = blk(x)
# x = blk(x, vis=True)
x = self.Spatial_norm(x)
x = rearrange(x, '(b f) n cw -> (b n) f cw', f=f)
return x
def TTE_foward(self, x):
assert len(x.shape) == 3, "shape is equal to 3"
b, f, _ = x.shape
x += self.Temporal_pos_embed
x = self.pos_drop(x)
blk = self.TTEblocks_0[0]
x = blk(x)
x = self.Temporal_norm(x)
return x
def ST_foward(self, x,xc):
assert len(x.shape)==4, "shape is equal to 4"
b, f, n, cw = x.shape
for i in range(0, self.block_depth-1):
x = rearrange(x, 'b f n cw -> (b f) n cw')
steblock = self.STEblocks[i]
tteblock = self.TTEblocks[i]
x = steblock(x)
x = self.Spatial_norm(x)
x = rearrange(x, '(b f) n cw -> (b n) f cw', f=f)
x = tteblock(x,xc)
x = self.Temporal_norm(x)
x = rearrange(x, '(b n) f cw -> b f n cw', n=n)
return x
# 在经过STE(把STE中包含的HRST去掉)和TTE后分出xc, 后7层都用同样的Block_xxc
def forward(self, x_2d, x_3d_dir, x_3d_bone, t):
x_3d = torch.cat((x_3d_dir,x_3d_bone), dim=-1)
if self.is_train:
b, f, n, c = x_2d.shape
else:
b, h, f, n, c = x_3d.shape
x_2d, t = x_2d.float(), t.float()
x = self.STE_forward(x_2d, x_3d, t,)
x = self.TTE_foward(x)
x = rearrange(x, '(b n) f cw -> b f n cw', n=n)
xc_list = []
xc = x.clone()
for idx in range(17):
pidx = idx
if self.bonedic[idx]:
cidx = [int(x) for x in self.bonedic[idx].split(',')]
xc_cidx = xc[:,:,cidx]
xc_cidx = torch.cat((xc_cidx , xc[:,:,pidx:pidx+1]),dim=2).mean(2)
else:
xc_cidx = xc[:,:,pidx:pidx+1].squeeze(2)
xc_list.append(xc_cidx)
xc = torch.stack(xc_list,dim=2)
x = self.ST_foward(x,xc)
x_pos = self.head_pose(x)
if self.is_train:
x_pos = x_pos.view(b, f, n, -1)
else:
x_pos = x_pos.view(b, h, f, n, -1)
return x_pos |