File size: 17,595 Bytes
1e45055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
from matplotlib.pyplot import bone
import torch
import numpy as np
import torch.nn as nn

def mpjpe(predicted, target, return_joints_err=False):
    """
    Mean per-joint position error (i.e. mean Euclidean distance),
    often referred to as "Protocol #1" in many papers.
    """
    assert predicted.shape == target.shape
    if not return_joints_err:
        return torch.mean(torch.norm(predicted - target, dim=len(target.shape)-1))
    else:
        errors = torch.norm(predicted - target, dim=len(target.shape)-1)
        # errors: [B, T, N]
        from einops import rearrange
        errors = rearrange(errors, 'B T N -> N (B T)')
        errors = torch.mean(errors, dim=-1).cpu().numpy().reshape(-1) * 1000
        return torch.mean(torch.norm(predicted - target, dim=len(target.shape)-1)), errors

def mpjpe_diffusion_all_min(predicted, target, mean_pos=False):
    """
    Mean per-joint position error (i.e. mean Euclidean distance),
    often referred to as "Protocol #1" in many papers.
    """
    #assert predicted.shape == target.shape
    if not mean_pos:
        t = predicted.shape[1]
        h = predicted.shape[2]
        # print(predicted.shape)
        # print(target.shape)
        target = target.unsqueeze(1).unsqueeze(1).repeat(1, t, h, 1, 1, 1)
        errors = torch.norm(predicted - target, dim=len(target.shape)-1)
        from einops import rearrange
        #errors = rearrange(errors, 't b h f n  -> t h b f n', ).reshape(t, h, -1)
        errors = rearrange(errors, 'b t h f n  -> t h b f n', )
        min_errors = torch.min(errors, dim=1, keepdim=False).values
        min_errors = min_errors.reshape(t, -1)
        min_errors = torch.mean(min_errors, dim=-1, keepdim=False)
        return min_errors
    else:
        t = predicted.shape[1]
        h = predicted.shape[2]
        mean_pose = torch.mean(predicted, dim=2, keepdim=False)
        target = target.unsqueeze(1).repeat(1, t, 1, 1, 1)
        errors = torch.norm(mean_pose - target, dim=len(target.shape) - 1)
        from einops import rearrange
        errors = rearrange(errors, 'b t f n  -> t b f n', )
        errors = errors.reshape(t, -1)
        errors = torch.mean(errors, dim=-1, keepdim=False)
        return errors

def mpjpe_diffusion_reproj(predicted, target, reproj_2d, target_2d):
    """
    Mean per-joint position error (i.e. mean Euclidean distance),
    often referred to as "Protocol #1" in many papers.
    """
    #assert predicted.shape == target.shape

    t = predicted.shape[1]
    h = predicted.shape[2]
    # print(predicted.shape)
    # print(target.shape)
    target = target.unsqueeze(1).unsqueeze(1).repeat(1, t, h, 1, 1, 1)
    target_2d = target_2d.unsqueeze(1).unsqueeze(1).repeat(1, t, h, 1, 1, 1)
    errors = torch.norm(predicted - target, dim=len(target.shape)-1)  # b,t,h,f,n
    errors_2d = torch.norm(reproj_2d - target_2d, dim=len(target_2d.shape) - 1)
    from einops import rearrange
    #errors = rearrange(errors, 't b h f n  -> t h b f n', ).reshape(t, h, -1)
    select_ind = torch.min(errors_2d, dim=2, keepdim=True).indices# b,t,1,f,n
    errors_select = torch.gather(errors, 2, select_ind)# b,t,1,f,n
    errors_select = rearrange(errors_select, 'b t h f n  -> t h b f n', )
    errors_select = errors_select.reshape(t, -1)
    errors_select = torch.mean(errors_select, dim=-1, keepdim=False)
    return errors_select

def mpjpe_diffusion(predicted, target, mean_pos=False):
    """
    Mean per-joint position error (i.e. mean Euclidean distance),
    often referred to as "Protocol #1" in many papers.
    """
    #assert predicted.shape == target.shape
    if not mean_pos:
        t = predicted.shape[1]
        h = predicted.shape[2]
        # print(predicted.shape)
        # print(target.shape)
        target = target.unsqueeze(1).unsqueeze(1).repeat(1, t, h, 1, 1, 1)
        errors = torch.norm(predicted - target, dim=len(target.shape)-1)
        from einops import rearrange
        #errors = rearrange(errors, 't b h f n  -> t h b f n', ).reshape(t, h, -1)
        errors = rearrange(errors, 'b t h f n  -> t h b f n', ).reshape(t, h, -1)
        errors = torch.mean(errors, dim=-1, keepdim=False)
        min_errors = torch.min(errors, dim=1, keepdim=False).values
        return min_errors
    else:
        t = predicted.shape[1]
        h = predicted.shape[2]
        mean_pose = torch.mean(predicted, dim=2, keepdim=False)
        target = target.unsqueeze(1).repeat(1, t, 1, 1, 1)
        errors = torch.norm(mean_pose - target, dim=len(target.shape) - 1)
        from einops import rearrange
        errors = rearrange(errors, 'b t f n  -> t b f n', )
        errors = errors.reshape(t, -1)
        errors = torch.mean(errors, dim=-1, keepdim=False)
        return errors

def mpjpe_diffusion_3dhp(predicted, target, valid_frame, mean_pos=False):
    """
    Mean per-joint position error (i.e. mean Euclidean distance),
    often referred to as "Protocol #1" in many papers.
    """
    #assert predicted.shape == target.shape
    from einops import rearrange

    valid_frame = valid_frame.squeeze(2)
    predicted = rearrange(predicted, 'b t h f n c  -> b f t h n c', )
    predicted_valid = predicted[valid_frame] # f, t, h, n, c
    target_valid = target[valid_frame] # f, n, c

    if not mean_pos:
        t = predicted_valid.shape[1]
        h = predicted_valid.shape[2]
        # print(predicted.shape)
        # print(target.shape)
        target_valid = target_valid.unsqueeze(1).unsqueeze(1).repeat(1, t, h, 1, 1)
        errors = torch.norm(predicted_valid - target_valid, dim=len(target_valid.shape)-1)
        from einops import rearrange
        #errors = rearrange(errors, 't b h f n  -> t h b f n', ).reshape(t, h, -1)
        errors = rearrange(errors, 'f t h n  -> t h f n', ).reshape(t, h, -1)
        errors = torch.mean(errors, dim=-1, keepdim=False)
        min_errors = torch.min(errors, dim=1, keepdim=False).values
        return min_errors
    else:
        t = predicted_valid.shape[1]
        h = predicted_valid.shape[2]
        mean_pose = torch.mean(predicted_valid, dim=2, keepdim=False)
        target_valid = target_valid.unsqueeze(1).repeat(1, t, 1, 1)
        errors = torch.norm(mean_pose - target_valid, dim=len(target_valid.shape) - 1)
        from einops import rearrange
        errors = rearrange(errors, 'f t n -> t f n', )
        errors = errors.reshape(t, -1)
        errors = torch.mean(errors, dim=-1, keepdim=False)
        return errors


def p_mpjpe(predicted, target):
    """
    Pose error: MPJPE after rigid alignment (scale, rotation, and translation),
    often referred to as "Protocol #2" in many papers.
    """
    assert predicted.shape == target.shape
    
    muX = np.mean(target, axis=1, keepdims=True)
    muY = np.mean(predicted, axis=1, keepdims=True)
    
    X0 = target - muX
    Y0 = predicted - muY

    normX = np.sqrt(np.sum(X0**2, axis=(1, 2), keepdims=True))
    normY = np.sqrt(np.sum(Y0**2, axis=(1, 2), keepdims=True))
    
    X0 /= normX
    Y0 /= normY

    H = np.matmul(X0.transpose(0, 2, 1), Y0)
    U, s, Vt = np.linalg.svd(H)
    V = Vt.transpose(0, 2, 1)
    R = np.matmul(V, U.transpose(0, 2, 1))

    # Avoid improper rotations (reflections), i.e. rotations with det(R) = -1
    sign_detR = np.sign(np.expand_dims(np.linalg.det(R), axis=1))
    V[:, :, -1] *= sign_detR
    s[:, -1] *= sign_detR.flatten()
    R = np.matmul(V, U.transpose(0, 2, 1)) # Rotation

    tr = np.expand_dims(np.sum(s, axis=1, keepdims=True), axis=2)

    a = tr * normX / normY # Scale
    t = muX - a*np.matmul(muY, R) # Translation
    
    # Perform rigid transformation on the input
    predicted_aligned = a*np.matmul(predicted, R) + t
    
    # Return MPJPE
    return np.mean(np.linalg.norm(predicted_aligned - target, axis=len(target.shape)-1))


def p_mpjpe_diffusion_all_min(predicted, target, mean_pos=False):
    """
    Pose error: MPJPE after rigid alignment (scale, rotation, and translation),
    often referred to as "Protocol #2" in many papers.
    """
    #assert predicted.shape == target.shape


    b_sz, t_sz, h_sz, f_sz, j_sz, c_sz = predicted.shape
    if not mean_pos:
        target = target.unsqueeze(1).unsqueeze(1).repeat(1, t_sz, h_sz, 1, 1, 1)
    else:
        predicted = torch.mean(predicted, dim=2, keepdim=False)
        target = target.unsqueeze(1).repeat(1, t_sz, 1, 1, 1)

    predicted = predicted.cpu().numpy().reshape(-1, j_sz, c_sz)
    target = target.cpu().numpy().reshape(-1, j_sz, c_sz)

    muX = np.mean(target, axis=1, keepdims=True)
    muY = np.mean(predicted, axis=1, keepdims=True)

    X0 = target - muX
    Y0 = predicted - muY

    normX = np.sqrt(np.sum(X0 ** 2, axis=(1, 2), keepdims=True))
    normY = np.sqrt(np.sum(Y0 ** 2, axis=(1, 2), keepdims=True))

    X0 /= normX
    Y0 /= normY

    H = np.matmul(X0.transpose(0, 2, 1), Y0)
    U, s, Vt = np.linalg.svd(H)
    V = Vt.transpose(0, 2, 1)
    R = np.matmul(V, U.transpose(0, 2, 1))

    # Avoid improper rotations (reflections), i.e. rotations with det(R) = -1
    sign_detR = np.sign(np.expand_dims(np.linalg.det(R), axis=1))
    V[:, :, -1] *= sign_detR
    s[:, -1] *= sign_detR.flatten()
    R = np.matmul(V, U.transpose(0, 2, 1))  # Rotation

    tr = np.expand_dims(np.sum(s, axis=1, keepdims=True), axis=2)

    a = tr * normX / normY  # Scale
    t = muX - a * np.matmul(muY, R)  # Translation

    # Perform rigid transformation on the input
    predicted_aligned = a * np.matmul(predicted, R) + t

    if not mean_pos:
        target = target.reshape(b_sz, t_sz, h_sz, f_sz, j_sz, c_sz)
        predicted_aligned = predicted_aligned.reshape(b_sz, t_sz, h_sz, f_sz, j_sz, c_sz)
        errors = np.linalg.norm(predicted_aligned - target, axis=len(target.shape) - 1)
        # from einops import rearrange
        # # errors = rearrange(errors, 't b h f n  -> t h b f n', ).reshape(t, h, -1)
        # errors = rearrange(errors, 'b t h f n  -> t h b f n', )
        errors = errors.transpose(1, 2, 0, 3, 4) # t, h, b, f, n
        min_errors = np.min(errors, axis=1, keepdims=False)
        min_errors = min_errors.reshape(t_sz, -1)
        min_errors = np.mean(min_errors, axis=1, keepdims=False)
        return min_errors
    else:
        target = target.reshape(b_sz, t_sz, f_sz, j_sz, c_sz)
        predicted_aligned = predicted_aligned.reshape(b_sz, t_sz, f_sz, j_sz, c_sz)
        errors = np.linalg.norm(predicted_aligned - target, axis=len(target.shape) - 1)
        # from einops import rearrange
        # errors = rearrange(errors, 'b t f n  -> t b f n', )
        errors = errors.transpose(1, 0, 2, 3)
        errors = errors.reshape(t_sz, -1)
        errors = np.mean(errors, axis=1, keepdims=False)
        return errors

def p_mpjpe_diffusion(predicted, target, mean_pos=False):
    """
    Pose error: MPJPE after rigid alignment (scale, rotation, and translation),
    often referred to as "Protocol #2" in many papers.
    """
    #assert predicted.shape == target.shape


    b_sz, t_sz, h_sz, f_sz, j_sz, c_sz = predicted.shape
    if not mean_pos:
        target = target.unsqueeze(1).unsqueeze(1).repeat(1, t_sz, h_sz, 1, 1, 1)
    else:
        predicted = torch.mean(predicted, dim=2, keepdim=False)
        target = target.unsqueeze(1).repeat(1, t_sz, 1, 1, 1)

    predicted = predicted.cpu().numpy().reshape(-1, j_sz, c_sz)
    target = target.cpu().numpy().reshape(-1, j_sz, c_sz)

    muX = np.mean(target, axis=1, keepdims=True)
    muY = np.mean(predicted, axis=1, keepdims=True)

    X0 = target - muX
    Y0 = predicted - muY

    normX = np.sqrt(np.sum(X0 ** 2, axis=(1, 2), keepdims=True))
    normY = np.sqrt(np.sum(Y0 ** 2, axis=(1, 2), keepdims=True))

    X0 /= normX
    Y0 /= normY

    H = np.matmul(X0.transpose(0, 2, 1), Y0)
    U, s, Vt = np.linalg.svd(H)
    V = Vt.transpose(0, 2, 1)
    R = np.matmul(V, U.transpose(0, 2, 1))

    # Avoid improper rotations (reflections), i.e. rotations with det(R) = -1
    sign_detR = np.sign(np.expand_dims(np.linalg.det(R), axis=1))
    V[:, :, -1] *= sign_detR
    s[:, -1] *= sign_detR.flatten()
    R = np.matmul(V, U.transpose(0, 2, 1))  # Rotation

    tr = np.expand_dims(np.sum(s, axis=1, keepdims=True), axis=2)

    a = tr * normX / normY  # Scale
    t = muX - a * np.matmul(muY, R)  # Translation

    # Perform rigid transformation on the input
    predicted_aligned = a * np.matmul(predicted, R) + t

    if not mean_pos:
        target = target.reshape(b_sz, t_sz, h_sz, f_sz, j_sz, c_sz)
        predicted_aligned = predicted_aligned.reshape(b_sz, t_sz, h_sz, f_sz, j_sz, c_sz)
        errors = np.linalg.norm(predicted_aligned - target, axis=len(target.shape) - 1)
        # from einops import rearrange
        # # errors = rearrange(errors, 't b h f n  -> t h b f n', ).reshape(t, h, -1)
        # errors = rearrange(errors, 'b t h f n  -> t h b f n', )
        errors = errors.transpose(1, 2, 0, 3, 4).reshape(t_sz, h_sz, -1) # t, h, b, f, n
        errors = np.mean(errors, axis=2, keepdims=False)
        min_errors = np.min(errors, axis=1, keepdims=False)
        return min_errors
    else:
        target = target.reshape(b_sz, t_sz, f_sz, j_sz, c_sz)
        predicted_aligned = predicted_aligned.reshape(b_sz, t_sz, f_sz, j_sz, c_sz)
        errors = np.linalg.norm(predicted_aligned - target, axis=len(target.shape) - 1)
        # from einops import rearrange
        # errors = rearrange(errors, 'b t f n  -> t b f n', )
        errors = errors.transpose(1, 0, 2, 3)
        errors = errors.reshape(t_sz, -1)
        errors = np.mean(errors, axis=1, keepdims=False)
        return errors

def p_mpjpe_diffusion_reproj(predicted, target, reproj_2d, target_2d):
    """
    Pose error: MPJPE after rigid alignment (scale, rotation, and translation),
    often referred to as "Protocol #2" in many papers.
    """
    #assert predicted.shape == target.shape

    b_sz, t_sz, h_sz, f_sz, j_sz, c_sz = predicted.shape

    target = target.unsqueeze(1).unsqueeze(1).repeat(1, t_sz, h_sz, 1, 1, 1)
    target_2d = target_2d.unsqueeze(1).unsqueeze(1).repeat(1, t_sz, h_sz, 1, 1, 1)
    errors_2d = torch.norm(reproj_2d - target_2d, dim=len(target_2d.shape) - 1) # b, t, h, f, n
    selec_ind = torch.min(errors_2d, dim=2, keepdims=True).indices # b, t, 1, f, n


    predicted = predicted.cpu().numpy().reshape(-1, j_sz, c_sz)
    target = target.cpu().numpy().reshape(-1, j_sz, c_sz)

    muX = np.mean(target, axis=1, keepdims=True)
    muY = np.mean(predicted, axis=1, keepdims=True)

    X0 = target - muX
    Y0 = predicted - muY

    normX = np.sqrt(np.sum(X0 ** 2, axis=(1, 2), keepdims=True))
    normY = np.sqrt(np.sum(Y0 ** 2, axis=(1, 2), keepdims=True))

    X0 /= normX
    Y0 /= normY

    H = np.matmul(X0.transpose(0, 2, 1), Y0)
    U, s, Vt = np.linalg.svd(H)
    V = Vt.transpose(0, 2, 1)
    R = np.matmul(V, U.transpose(0, 2, 1))

    # Avoid improper rotations (reflections), i.e. rotations with det(R) = -1
    sign_detR = np.sign(np.expand_dims(np.linalg.det(R), axis=1))
    V[:, :, -1] *= sign_detR
    s[:, -1] *= sign_detR.flatten()
    R = np.matmul(V, U.transpose(0, 2, 1))  # Rotation

    tr = np.expand_dims(np.sum(s, axis=1, keepdims=True), axis=2)

    a = tr * normX / normY  # Scale
    t = muX - a * np.matmul(muY, R)  # Translation

    # Perform rigid transformation on the input
    predicted_aligned = a * np.matmul(predicted, R) + t


    target = target.reshape(b_sz, t_sz, h_sz, f_sz, j_sz, c_sz)
    predicted_aligned = predicted_aligned.reshape(b_sz, t_sz, h_sz, f_sz, j_sz, c_sz)
    errors = np.linalg.norm(predicted_aligned - target, axis=len(target.shape) - 1)
    errors = torch.from_numpy(errors).cuda()
    errors_select = torch.gather(errors, 2, selec_ind) #b, t, 1, f, n
    from einops import rearrange
    errors_select = rearrange(errors_select, 'b t h f n  -> t h b f n', )
    errors_select = errors_select.reshape(t_sz, -1)
    errors_select = torch.mean(errors_select, dim=-1, keepdim=False)
    #errors = errors.transpose(1, 2, 0, 3, 4)  # t, h, b, f, n
    errors_select = errors_select.cpu().numpy()

    return errors_select


def n_mpjpe(predicted, target):
    """
    Normalized MPJPE (scale only), adapted from:
    https://github.com/hrhodin/UnsupervisedGeometryAwareRepresentationLearning/blob/master/losses/poses.py
    """
    assert predicted.shape == target.shape
    
    norm_predicted = torch.mean(torch.sum(predicted**2, dim=3, keepdim=True), dim=2, keepdim=True)
    norm_target = torch.mean(torch.sum(target*predicted, dim=3, keepdim=True), dim=2, keepdim=True)
    scale = norm_target / norm_predicted
    return mpjpe(scale * predicted, target)


def mean_velocity_error_train(predicted, target, axis=0):
    """
    Mean per-joint velocity error (i.e. mean Euclidean distance of the 1st derivative)
    """
    assert predicted.shape == target.shape
    
    # velocity_predicted = torch.diff(predicted, dim=axis)
    # velocity_target = torch.diff(target, dim=axis)
    assert axis == 1
    velocity_predicted = predicted[:, 1:,:,:] - predicted[:, :-1,:,:]
    velocity_target = target[:, 1:, :, :] - target[:, :-1, :, :]

    return torch.mean(torch.norm(velocity_predicted - velocity_target, dim=len(target.shape)-1))

def mean_velocity_error(predicted, target, axis=0):
    """
    Mean per-joint velocity error (i.e. mean Euclidean distance of the 1st derivative)
    """
    assert predicted.shape == target.shape

    velocity_predicted = np.diff(predicted, axis=axis)
    velocity_target = np.diff(target, axis=axis)
    
    return np.mean(np.linalg.norm(velocity_predicted - velocity_target, axis=len(target.shape)-1))